Инженерная графика Резьбовые и сварные соединения Соединения деталей с помощью болтов, винтов и шпилек Сварные соединения деталей

Соединение деталей машин

Детали объединяются в машину посредством соединений.

Соединения состоят из соединительных деталей и прилегающих частей соединяемых деталей, форма которых подчинена задаче соединения. В отдельных конструкциях специальные соединительные детали могут отсутствовать. Все соединения делятся на:

Неразъёмные, разборка которых возможна лишь при разрушении  соединяющих или соединяемых деталей;

Разъёмные, позволяющие разборку без разрушения.

Выбор типа соединения определяет конструктор.

НЕРАЗЪЁМНЫЕ СОЕДИНЕНИЯ

Сварные соединения

 Не имеют соединяющих деталей. Выполняются за счёт местного нагрева и диффузии (перемешивания частиц) соединяемых деталей. Создают, практически, одну целую, монолитную деталь. Весьма прочны, т.к. используют одну из самых могучих сил природы - силы межмолекулярного сцепления.

Сварку (дуговую электросварку) изобрел в 1882 году российский инженер Н.И. Бенардос. С тех пор технология процесса значительно усовершенствована. Прочность сварного шва теперь практически не отличается от монолита, освоена сварка всех конструкционных материалов, включая алюминий и неметаллы.

Дуговая и контактная электросварка является основным и наиболее совершенным способом соединения деталей несущих конструкций корпусов локомотивов и вагонов. Сварка применяется и для высоконагруженных силовых установок локомотивов, например, в сварном стальном V-образном блоке цилиндров тепловозного дизеля Д40 и т.п.


Сварные соединения (швы) по взаимному расположению соединяемых элементов делятся на следующие группы:

Для сварки характерна высокая экономичность: малая трудоёмкость; сравнительная дешевизна оборудования; возможность автоматизации; отсутствие больших сил, как, например, в кузнечно-прессовом производстве; отсутствие больших объёмов нагретого металла, как, например, в литейном производстве. Однако говорить обо всех этих достоинствах имеет смысл только при хорошо налаженном и организованном технологическом процессе сварки.

Недостатки сварки состоят в том, что при низком качестве шва возникают температурные повреждения материала, кроме того, из-за неравномерности нагрева возникает коробление деталей. Это устраняется либо привлечением квалифицированного (высокооплачиваемого) сварщика, либо применением автоматической сварки, а также специальными приспособлениями, в которых деталь фиксируется до полного остывания.

 Общее условие проектирования сварных соединений – обеспечение равнопрочности шва и свариваемых деталей [27].

Расчёт на прочность сварных швов

По ориентации относительно приложенных сил различают:

лобовые швы – перпендикулярные силам;

фланговые швы – параллельны силам;

косые швы – под углом к силам.

Эти виды швов в различных сочетаниях применяются в разных соединениях.

Соединения встык обычно выполняются лобовыми швами. При качественной сварке соединения разрушаются не по шву, а в зоне температурного влияния. Поэтому рассчитываются на прочность по сечению соединяемых деталей без учёта утолщения швов. Наиболее частые случаи – работа на растяжение и на изгиб.

Напряжения растяжения: sраст = Q / S = Q / bd ≤ [sраст]шва.

Напряжения изгиба: sизг = Mизг / W = 6 Mизг / bd 2 ≤ [sизг]шва.

Допускаемые напряжения шва [s раст]шва и [s изг]шва принимаются в размере 90% от соответствующих допускаемых напряжений материала свариваемых деталей.

Соединения внахлёстку выполняются лобовыми, фланговыми и косыми швами.

Лобовые швы в инженерной практике рассчитывают только по касательным напряжениям. За расчётное сечение принимают биссектрису m-m, где обычно наблюдается разрушение. Расчёт только по касательным напряжениям не зависит от угла приложения нагрузки.

При этом τ = Q / (0,707 k l) ≤ [τ']шва.

Фланговые швы характерны неравномерным распределением напряжений, поэтому их рассчитывают по средним касательным напряжениям. При действии растягивающей силы касательные напряжения равны:

 τ = Q / (2*0,707 d l) ≤ [τ']шва.

При действии момента: τ = M / (0,707 k d  l) ≤ [τ']шва.

Если швы несимметричны, то нагрузка на фланговые швы распределяется по закону рычага Q1,2 = Q l1,2 / ( l1 + l2), где  l1 и l2 – длины швов.

При этом швы рассчитывают по соответствующим нагрузкам, а длины швов назначают пропорционально этим нагрузкам. Касательные напряжения в швах τ1,2 = Q1,2 / (1,414 d l1,2 ) ≤ [τ']шва.

Косые швы рассчитываются аналогичным образом. Нагрузка Q раскладывается на проекции в продольном и нормальном направлениях к шву, а далее выполняются расчёты лобового и флангового швов.

 Комбинированные лобовые и фланговые швы рассчитывают на основе принципа распределения нагрузки пропорционально несущей способности отдельных швов. При действии силы Q касательные напряжения равны:

τQ = Q / [0,707 k ( 2lф+ lл )] ≤ [τ']шва.

Если действует момент M, то

τM = M / [0,707 k lл ( lф+ lл /6)] ≤ [τ']шва.

При совместном действии силы и момента касательные напряжения складываются τ = τМ + τQ ≤ [τ']шва.

Тавровые и угловые швы соединяют элементы в перпендикулярных плоскостях. Выполняются либо стыковым швом с разделкой кромок (а), либо угловым без разделки кромок (б). При нагружении изгибающим моментом и силой прочность соединения оценивают:

 для стыкового шва (а) по нормальным напряжениям

 s = 6M/ (bd2) + Q / (ld ) ≤ [sраст]шва,

 для углового шва (б) по касательным напряжениям

τ = 6M/(1,414 l2k)+ Q / (1,414 l k ) ≤ [τ']шва.

В любом случае для расчёта самых сложных сварных швов сначала необходимо привести силу и момент к шву и распределить  их пропорционально несущей способности (длине) всех простых участков. Таким образом, любой сложный шов сводится к сумме простейших расчётных схем.

8.1.2. Заклёпочные соединения

Образуются с помощью специальных деталей – заклёпок [1, 10, 38]. Заклёпка имеет грибообразную форму и выпускается с одной головкой (закладной) вставляется в совместно просверленные детали, а затем хвостовик ударами молотка или пресса расклёпывается, образуя вторую головку (замыкающую). При этом детали сильно сжимаются, образуя прочное, неподвижное неразъёмное соединение.

Достоинства заклёпочного соединения:

соединяют не свариваемые детали (Al);

не дают температурных деформаций;

детали при разборке не разрушаются.

Недостатки заклёпочного соединения:

детали ослаблены отверстиями;

высокий шум и ударные нагрузки при изготовлении;

повышенный расход материала.

Заклёпки изготавливают из сравнительно мягких материалов: Ст2, Ст3, Ст10, Ст15, латунь, медь, алюминий.

Заклёпки стандартизованы и выпускаются в разных модификациях.

Сплошные с полукруглой головкой (а) ГОСТ 10299-80, 14797-85 для силовых и плотных швов;

Сплошные с плоской головкой (б) ГОСТ 14801-85 для коррозионных сред;

Сплошные с потайной головкой (в) ГОСТ 10300-80, 14798-85 для уменьшения аэро- и гидросопротивления (самолёты, катера);

Полупустотелые (г,д,е) ГОСТ 12641-80, 12643-80 и пустотелые (ж,з,и) ГОСТ 12638-80, 12640-80 для соединения тонких листов и неметаллических деталей без больших нагрузок.


Заклёпки испытывают сдвиг (срез) и смятие боковых поверхностей. По этим двум критериям рассчитывается диаметр назначаемой заклёпки. При этом расчёт на срез – проектировочный, а расчёт на смятие – проверочный.

Здесь и далее имеем в виду силу, приходящуюся на одну заклёпку.

При одной плоскости среза диаметр заклёпки:

При двух плоскостях среза (накладки с двух сторон):

Напряжения смятия на боковых поверхностях заклёпки sсм = P/Sd ≤ [s]см,

где S – толщина наименьшей из соединяемых деталей. При проектировании заклёпочных швов как, например, в цистернах, необходимо следить, чтобы равнодействующая нагрузок приходилась на центр тяжести шва.

Следует симметрично располагать плоскости среза относительно линии действия сил, чтобы избежать отрыва головок.

Кроме того, необходимо проверять прочность деталей в сечении, ослабленном отверстиями.

При защите курсового проекта по деталям машин нужно давать четкие ответы на такие вопросы, как определение действительных напряжений в различных сечениях вала, характер износа зубьев зубчатых и червячных колес, распределение напряжений в шпоночных и шлицевых, зубчатых соединениях, особенности расчета подшипников качения на динамическую грузоподъемность, обоснование выбора материала деталей, допусков и посадок, знаков шероховатости поверхности, обоснование выбора принятых коэффициентов запаса прочности и многие другие вопросы.
Соединения разъёмные и неразъёмные