Проектирование электротехнических устройств Курс лекций по электротехнике Курс лекций по теории электрических цепей Курс лекций по информатике

Проектирование и моделирование электротехнических устройств

Расчет выпрямителей при нагрузке, начинающейся с индуктивного элемента

Выпрямитель гармонического напряжения при нагрузке, начинающейся с индуктивного элемента

Основная (нулевая) схема выпрямителя гармонического напряжения при нагрузке, начинающейся с индуктивного элемента, приведена на рис. 2.18.1. Показатели выпрямителя зависят от индуктивности дросселя L, образующего вместе с конденсатором C сглаживающий фильтр. Если запас энергии в дросселе достаточен для того, чтобы подпитывать нагрузку током в течение интервала времени, во время которого мгновенная мощность в сети переменного тока будет меньше мощности, потребляемой нагрузкой, то ток в дросселе  (выпрямленный ток) непрерывен (рис. 2.18.2, в). При этом в выпрямителе всегда открыт какой-нибудь из вентилей. В противном случае при малом запасе энергии в дросселе ток  получается разрывным, пульсирующим. В те моменты, когда он равен нулю, все вентили выпрямителя заперты, а поступление мощности в нагрузку происходит благодаря разрядке конденсатора .

 1) 2) Системы теплоснабжения. Графики тепловых нагрузок В России потребляется колоссальное количество теплоты для нужд промышленности и бытового потребления. При этом осуществляется линия на централизованное теплоснабжение, суть которого состоит в обеспечении теплотой ряда потребителей из одного источника. Укрупнение источников теплоты дает технические и экономические преимущества. Так, замена большого числа мелких отопительных котельных одной крупной районной котельной дает возможность применить мощные современные водогрейные котлы с высоким КПД, позволяющие существенно снизить численность обслуживающего персонала и загрязнение атмосферы вредными выбросами.

Рис. 2.18. Схема выпрямителя при нагрузке, начинающейся с индуктивного элемента, (1) и диаграммы электромагнитных процессов в нем (2).

Запас энергии в дросселе пропорционален его индуктивности и квадрату выпрямленного тока. Поэтому при заданном токе нагрузки для обеспечения режима непрерывного тока индуктивность дросселя L должна превышать некоторое значение, называемое критическим , иначе выпрямитель будет работать в режиме “прерывистых токов” [6].

Расчет идеализированного выпрямителя при нагрузке, начинающейся с индуктивного элемента

Рассмотрим процессы в выпрямителе с идеальным трансформатором и вентилями, т.е. первый не имеет индуктивностей рассеяния и активного сопротивления обмоток, а вентили – внутреннего сопротивления и порога выпрямления. В течение одного периода выпрямленного напряжения по очереди срабатывают все m фаз вторичной стороны. Каждый из вентилей выпрямителя в течение интервала времени, равного T/m, открыт и напряжение на нем равно нулю. В идеализированном выпрямителе процесс коммутации токов фаз, т.е. процесс перехода выпрямленного тока с одной из фаз на другую, - мгновенный.

Максимальным обратное напряжение на вентиле будет при отрицательных значениях ЭДС его фазы. При четном числе фаз минимум ЭДС фазы  и максимум  совпадают во времени, тогда пиковое значение обратного напряжения 2. При нечетном числе фаз минимум ЭДС фазы  совпадает во времени с минимумом  и пиковое значение обратного напряжения будет меньше 2. Выпрямленное напряжение  по форме повторяет огибающую ЭДС всех фаз (рис. 2.18.2, б). Период основной гармоники выпрямленного напряжения в m раз меньше периода выпрямляемого переменного напряжения.

Укажем основные соотношения, характеризующие такой идеализированный выпрямитель. Выпрямленное напряжение имеет период T/m и внутри каждого периода меняется по косинусоидальному закону, то, разложив его в ряд Фурье, получим выражения для составляющих. Для идеализированного выпрямителя постоянная составляющая выпрямленного напряжения  связана с действующим значением напряжения на вторичной обмотке трансформатора  согласно [6]:

, (2.29)

где  - коэффициент, зависящий только от m и определяющий использование обмоток трансформатора по напряжению (равен 1,11; 0,855 и 0,74 для m = 2; 3 и 6).

Амплитуда k-й гармоники  выпрямленного напряжения связана с  согласно:

 . (2.30)

Таким образом, коэффициент пульсаций k-й гармоники на входе фильтра:

 (2.31)

 Определить значение и форму выпрямленного тока  и напряжения на нагрузке  можно рассмотрев схемы рис. 2.19. В схеме (рис. 2.19, а) нелинейная часть выпрямителя заменена источником напряжения известной формы и значения . Точное определение тока дросселя в схеме (рис. 2.19, а) связано с громоздкими выкладками и дает неудобное для расчетов соотношение, поэтому этот ток рассчитывают приближенно. Полагают напряжение на нагрузке постоянным и равным  и заменяют схему (рис. 2.19, а) схемой (рис. 2.19, б).

Напряжение, приложенное к дросселю L в схеме (рис. 2.19, б), равно разности выпрямленного напряжения  и его постоянной составляющей  или  (считая дроссель идеальным без потерь). Выпрямленный ток  (рис. 2.19, в) определяется путем интегрирования падения напряжения на дросселе L.

Рис. 2.19. Схема замещения выпрямителя: с LC-фильтром (а) и упрощенная (б); диаграммы электромагнитных процессов в нем (в, г).

 Максимума и минимума ток достигает при ( - ) = 0. Если индуктивность дросселя равна критической, то минимум тока  равен нулю (рис. 2.19, в), что позволяет определить условие для расчета  [6]:

, (2.32)

где значения коэффициента x(m), зависящего только от числа фаз, следующие: 0,332; 0,083 и 0,01 для m = 2; 3 и 6.

Представим выпрямленный ток рядом Фурье, амплитуды k-х гармонических, входящих в его переменную составляющую, определяются, с учетом (2.30), согласно:

  (2.33)

 Легко заметить быстрое уменьшение амплитуд гармоник с ростом их номера. Так, для выпрямителя с m = 2 амплитуда второй гармоники   в 10 раз меньше амплитуды первой .

Закон изменения напряжения на конденсаторе С находят путем интегрирования переменной составляющей выпрямленного тока равной (-).

В такой расчетной модели коэффициент пульсаций выходного напряжения определяется согласно [6]:

, (2.34)

где функция  для числа фаз m = 2; 3 и 6 соответственно равна 0,169; 0,0284 и 0,00162.

Коэффициент сглаживания пульсации для каждой из гармоник выпрямленного напряжения:

  (2.35)

В расчете с реальным дросселем следует учитывать, что напряжение в нагрузке  (или ) отличается от величины постоянной составляющей  выпрямленного напряжения  на величину падения напряжения на активном сопротивлении дросселя L.

Емкость конденсатора сказывается не только на пульсациях выпрямленного напряжения, но и на форме импульса тока вентиля. При очень большой емкости конденсатора выходное напряжение почти постоянно и импульс тока симметричен, т.к. углы отсечки  и  равны. При уменьшении емкости импульс немного искажается по форме и сдвигается в сторону опережения. Угол отсечки  становится больше угла .

Трудность возникает при расчете коэффициента пульсаций выпрямителей, поскольку, положив , приняли пульсации выпрямителя равными нулю. Однако если пульсации выходного напряжения небольшие, то и отклонения формы тока вентиля от косинусоидальной также окажутся небольшими. В результате для расчета переменной составляющей тока всех вентилей, проходящей через выходной конденсатор выпрямителя и определяющий его пульсации, можно воспользоваться формулой (2.9), но уже не как точной, а как приближенной

Учитывая то, что на фильтре знакопостоянное напряжение, конденсатор следует выбирать полярный, c номинальным напряжением не менее чем на 10% больше чем напряжение холостого хода выпрямителя (на случай скачков напряжения в электросети). Также следует учесть изменение емкости конденсатора в течение минимальной наработки, допустимое отклонение емкости, при этом допустимые напряжения переменной составляющей пульсирующего тока не должны превышать предельных значений для выбранного типа конденсатора. Переменная составляющая пульсирующего напряжения рассчитывается согласно

Действующее значение ЭДС вторичной обмотки трансформатора


На главную