Некоторые замечательные пределы.

Первый замечательный предел. , где P(x) = a0xn + a1xn-1 +…+an, 

Q(x) = b0xm + b1xm-1 +…+bm - многочлены.

Итого:

Второй замечательный предел.

Третий замечательный предел.

Часто если непосредственное нахождение предела какой – либо функции представляется сложным, то можно путем преобразования функции свести задачу к нахождению замечательных пределов.

 Кроме трех, изложенных выше, пределов можно записать следующие полезные на практике соотношения:

 Пример. Найти предел.

Пример. Найти предел.

 Пример. Найти предел.

 Пример. Найти предел.

 

 Пример. Найти предел.

 Пример. Найти предел .

Для нахождения этого предела разложим на множители числитель и знаменатель данной дроби.

x2 – 6x + 8 = 0; x2 – 8x + 12 = 0;

D = 36 – 32 = 4; D = 64 – 48 = 16;

x1 = (6 + 2)/2 = 4; x1 = (8 + 4)/2 = 6;

x2 = (6 – 2)/2 = 2 ; x2 = (8 – 4)/2 = 2;

Тогда

 Пример. Найти предел.

 домножим числитель и знаменатель дроби на сопряженное выражение: =

=.

 

Пример. Найти предел.

 Пример. Найти предел .

 Разложим числитель и знаменатель на множители.

x2 – 3x + 2 = (x – 1)(x – 2)

x3 – 6x2 + 11x – 6 = (x – 1)(x – 2)(x – 3),.

x2 – 5x + 6 = (x – 2)(x – 3)

Тогда

 Пример. Найти предел.

 Для самостоятельного решения:

8)  - не определен.

В основе построения математической теории лежит аксиоматический метод. В основу научной теории кладутся некоторые исходные положения, называемые аксиомами, а все остальные положения теории получаются, как логические следствия аксиом. В математике используют два вида умозаключений: дедукция и индукция. Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры.
На главную