Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых


Теорема Тейлора. Формула Тейлора.

Формула Тейлора.

Тейлор (1685-1731) – английский математик

Теорема Тейлора. 1) Пусть функция f(x) имеет в точке х = а и некоторой ее окрестности производные порядка до (n+1) включительно.{ Т.е. и все предыдущие до порядка n функции и их производные непрерывны и дифференцируемы в этой окрестности}.

2) Пусть х- любое значение из этой окрестности, но х ¹ а.

Тогда между точками х и а найдется такая точка e, что справедлива формула:

это выражение называется формулой Тейлора, а выражение:

называется остаточным членом в форме Лагранжа.

Доказательство. Представим функцию f(x) в виде некоторого многочлена Pn(x), значение которого в точке х = а равно значению функции f(x), а значения его производных равно значениям соответствующих производных функции в точке х = а.

  (1)

Многочлен Pn(x) будет близок к функции f(x). Чем больше значение n, тем ближе значения многочлена к значениям функции, тем точнее он повторяет функцию.

 Представим этот многочлен с неопределенными пока коэффициентами:

  (2)

Для нахождения неопределенных коэффициентов вычисляем производные многочлена в точке х = а и составляем систему уравнений:

   (3)

 Решение этой системы при х = а не вызывает затруднений, получаем:

…………………….

 Подставляя полученные значения Ci в формулу (2), получаем:

Как было замечено выше, многочлен не точно совпадает с функцией f(x), т.е. отличается от нее на некоторую величину. Обозначим эту величину Rn+1(x). Тогда:

f(x) = Pn(x) + Rn+1(x)

Теорема доказана.

 Рассмотрим подробнее величину Rn+1(x).

  y Как видно на рисунке, в

 точке х = а значение мно-

 f(x) Rn+1(x)  гочлена в точности совпа-

 дает со значением функции.

 Pn(x) Однако, при удалении от точ-

 ки х = а расхождение значе- ний увеличивается. 

  0 a x x

Иногда используется другая запись для Rn+1(x). Т.к. точка eÎ(a, x), то найдется такое число q из интервала 0 < q < 1, что e = a + q(x – a).

 Тогда можно записать:

Тогда, если принять a = x0, x – a = Dx, x = x0 + Dx, формулу Тейлора можно записать в виде:

где 0 < q < 1

Если принять n =0, получим: f(x0 + Dx) – f(x0) = f¢(x0 + qDx)×Dx – это выражение называется формулой Лагранжа. (Жозеф Луи Лагранж (1736-1813) французский математик и механик).

Формула Тейлора имеет огромное значение для различных математических преобразований. С ее помощью можно находить значения различных функций, интегрировать, решать дифференциальные уравнения и т.д.

При рассмотрении степенных рядов будет более подробно описаны некоторые особенности и условия разложения функции по формуле Тейлора.

9.2. Формула Маклорена.

Колин Маклорен (1698-1746) шотландский математик.

 Формулой Маклорена называется формула Тейлора при а = 0:

Мы получили так называемую формулу Маклорена с остаточным членом в форме Лагранжа.

Следует отметить, что при разложении функции в ряд применение формулы Маклорена предпочтительнее, чем применение непосредственно формулы Тейлора, т.к. вычисление значений производных в нуле проще, чем в какой- либо другой точке, естественно, при условии, что эти производные существуют.

Однако, выбор числа а очень важен для практического использования. Дело в том, что при вычислении значения функции в точке, расположенной относительно близко к точке а, значение, полученное по формуле Тейлора, даже при ограничении тремя – четырьмя первыми слагаемыми, совпадает с точным значением функции практически абсолютно. При удалении же рассматриваемой точки от точки а для получения точного значения надо брать все большее количество слагаемых формулы Тейлора, что неудобно.

Т.е. чем больше по модулю значение разности (х – а) тем более точное значение функции отличается от найденного по формуле Тейлора.

Кроме того, можно показать, что остаточный член Rn+1(x) является бесконечно малой функцией при х®а, причем долее высокого порядка, чем (х – а)m, т.е.

.

Таким образом, ряд Маклорена можно считать частным случаем ряда Тейлора.

В основе построения математической теории лежит аксиоматический метод. В основу научной теории кладутся некоторые исходные положения, называемые аксиомами, а все остальные положения теории получаются, как логические следствия аксиом. В математике используют два вида умозаключений: дедукция и индукция. Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры.
На главную