Общая схема исследования функций

Процесс исследования функции состоит из нескольких этапов. Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать:

Область существования функции.

Это понятие включает в себя и область значений и область определения функции.

Точки разрыва. (Если они имеются).

Интервалы возрастания и убывания.

Точки максимума и минимума.

Максимальное и минимальное значение функции на ее области определения.

Области выпуклости и вогнутости.

Точки перегиба.(Если они имеются).

Асимптоты.(Если они имеются).

Построение графика.

Применение этой схемы рассмотрим на примере.

Пример. Исследовать функцию и построить ее график.

Находим область существования функции. Очевидно, что областью определения функции является область (-¥; -1) È (-1; 1) È (1; ¥).

В свою очередь, видно, что прямые х = 1, х = -1 являются вертикальными асимптотами кривой.

Областью значений данной функции является интервал (-¥; ¥).

Точками разрыва функции являются точки х = 1, х = -1.

Находим критические точки.

Найдем производную функции

Критические точки: x = 0; x = -; x = ; x = -1; x = 1.

Найдем вторую производную функции

.

 Определим выпуклость и вогнутость кривой на промежутках.

-¥ < x < -, y¢¢ < 0, кривая выпуклая

- < x < -1, y¢¢ < 0, кривая выпуклая

-1 < x < 0, y¢¢ > 0, кривая вогнутая

 0 < x < 1, y¢¢ < 0, кривая выпуклая

 1 < x < , y¢¢ > 0, кривая вогнутая

  < x < ¥,  y¢¢ > 0, кривая вогнутая

Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках.

-¥ < x < -, y¢ > 0, функция возрастает

- < x < -1, y¢ < 0, функция убывает

-1 < x < 0, y¢ < 0, функция убывает

  0 < x < 1, y¢ < 0, функция убывает

 1 < x < , y¢ < 0, функция убывает

  < x < ¥,  y¢¢ > 0, функция возрастает

Видно, что точка х = - является точкой максимума, а точка х =  является точкой минимума. Значения функции в этих точках равны соответственно 3/2 и -3/2.

Про вертикальные асимптоты было уже сказано выше. Теперь найдем наклонные асимптоты.

 Итого, уравнение наклонной асимптоты – y = x.

Построим график функции:

Ниже рассмотрим несколько примеров исследования методами дифференциального исчисления различных типов функций.

Пример: Методами дифференциального исчисления исследовать функцию   и построить ее график.

1. Областью определения данной функции являются все действительные числа (-¥; ¥).

2. Функция является функцией общего вида в смысле четности и нечетности.

3. Точки пересечения с координатными осями: c осью Оу: x = 0; y = 1;

 с осью Ох: y = 0; x = 1;

4. Точки разрыва и асимптоты: Вертикальных асимптот нет.

Наклонные асимптоты: общее уравнение y = kx + b;

Итого: у = -х – наклонная асимптота.

5. Возрастание и убывание функции, точки экстремума.

. Видно, что у¢< 0 при любом х ¹ 0, следовательно, функция убывает на всей области определения и не имеет экстремумов. В точке х = 0 первая производная функции равна нулю, однако в этой точке убывание не сменяется на возрастание, следовательно, в точке х = 0 функция скорее всего имеет перегиб. Для нахождения точек перегиба, находим вторую производную функции.

 y¢¢ = 0 при х =0 и y¢¢ = ¥ при х = 1.

Точки (0,1) и (1,0) являются точками перегиба, т.к. y¢¢(1-h) < 0; y¢¢(1+h) >0; y¢¢(-h) > 0; y¢¢(h) < 0 для любого h > 0.

6. Построим график функции.

Основные черты дедуктивного метода. Замечательной чертой дедуктивной системы изложения является простота этого построения, позволяющая описать его в немногих словах. Дедуктивная система изложения сводится: 1) к перечислению основных понятий, 2) к изложению определений, 3) к изложению аксиом, 4) к изложению теорем, 5) к доказательству этих теорем. Аксиома - утверждение, принимаемое без доказательств. Теорема - утверждение, вытекающее из аксиом. Доказательство - составная часть дедуктивной системы, это есть рассуждение, которое показывает, что истинность утверждения вытекает логически из истинности предыдущих теорем или аксиом.
На главную