Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых


Функциональные ряды.

Функциональные последовательности.

Определение. Если членами ряда будут не числа, а функции от х, то ряд называется функциональным.

Исследование на сходимость функциональных рядов сложнее исследования числовых рядов. Один и тот же функциональный ряд может при одних значениях переменной х сходиться, а при других – расходиться. Поэтому вопрос сходимости функциональных рядов сводится к определению тех значений переменной х, при которых ряд сходится.

 Совокупность таких значений называется областью сходимости.

Так как пределом каждой функции, входящей в область сходимости ряда, является некоторое число, то пределом функциональной последовательности будет являться некоторая функция:

Определение. Последовательность {fn(x)} сходится к функции f(x) на отрезке [a,b], если для любого числа e>0 и любой точки х из рассматриваемого отрезка существует номер N = N(e, x), такой, что неравенство

выполняется при n>N.

При выбранном значении e>0 каждой точке отрезка [a,b] соответствует свой номер и, следовательно, номеров, соответствующих всем точкам отрезка [a,b], будет бесчисленное множество. Если выбрать из всех этих номеров наибольший, то этот номер будет годиться для всех точек отрезка [a,b], т.е. будет общим для всех точек.

Определение. Последовательность {fn(x)} равномерно сходится к функции f(x) на отрезке [a,b], если для любого числа e>0 существует номер N = N(e), такой, что неравенство

выполняется при n>N для всех точек отрезка [a,b].

 Пример. Рассмотрим последовательность

Данная последовательность сходится на всей числовой оси к функции f(x)=0, т.к.

 Построим графики этой последовательности:

sinx 

Как видно, при увеличении числа n график последовательности приближается к оси х.

Функциональные ряды.

Определение. Частными (частичными) суммами функционального ряда   называются функции

Определение. Функциональный ряд называется сходящимся в точке (х=х0), если в этой точке сходится последовательность его частных сумм. Предел последовательности  называется суммой ряда  в точке х0.

Определение. Совокупность всех значений х, для которых сходится ряд называется областью сходимости ряда.

Определение. Ряд называется равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

  Теорема. (Критерий Коши равномерной сходимости ряда)

Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа e>0 существовал такой номер N(e), что при n>N и любом целом p>0 неравенство

выполнялось бы для всех х на отрезке [a,b].

  Теорема. (Признак равномерной сходимости Вейерштрасса)

(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)

Ряд сходится равномерно и притом абсолютно на отрезке [a,b], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами :

т.е. имеет место неравенство:

.

Еще говорят, что в этом случае функциональный ряд  мажорируется числовым рядом .

 Пример. Исследовать на сходимость ряд .

Так как  всегда, то очевидно, что .

При этом известно, что общегармонический ряд  при a=3>1 сходится, то в соответствии с признаком Вейерштрасса исследуемый ряд равномерно сходится и притом в любом интервале.

  Пример. Исследовать на сходимость ряд .

На отрезке [-1,1] выполняется неравенство  т.е. по признаку Вейерштрасса на этом отрезке исследуемый ряд сходится, а на интервалах (-µ, -1) È (1, µ) расходится.

Свойства равномерно сходящихся рядов.

 1) Теорема о непрерывности суммы ряда.

Если члены ряда  - непрерывные на отрезке [a,b] функции и ряд сходится равномерно, то и его сумма S(x) есть непрерывная функция на отрезке [a,b].

  2) Теорема о почленном интегрировании ряда.

Равномерно сходящийся на отрезке [a,b] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [a,b] , сходится к интегралу от суммы ряда по этому отрезку.

 3) Теорема о почленном дифференцировании ряда.

Если члены ряда  сходящегося на отрезке [a,b] представляют собой непрерывные функции, имеющие непрерывные производные, и ряд, составленный из этих производных сходится на этом отрезке равномерно, то и данный ряд сходится равномерно и его можно дифференцировать почленно.

 

На основе того, что сумма ряда является некоторой функцией от переменной х, можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями.

История естествознания свидетельствует, что возможность аксиоматического построения той или иной науки появляется лишь на довольно высоком уровне развития этой науки, на базе большого фактического материала, позволяет отчетливо выявить те основные связи и соотношения, которые существуют между объектами, изучаемыми данной наукой. Образцом аксиоматического построения математической науки является элементарная геометрия. Система аксиом геометрии были изложены Евклидом (около 300 г. до н. э.) в непревзойденном по своей значимости труде - "Начала". Эта система в основных чертах сохранилась и по сей день.
На главную