Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых


Несобственные интегралы.

Интегралы с бесконечными пределами.

Пусть функция f(x) определена и непрерывна на интервале [a, ¥). Тогда она непрерывна на любом отрезке [a, b].

Определение: Если существует конечный предел , то этот предел называется несобственным интегралом от функции f(x) на интервале [a, ¥).

 Обозначение:

Если этот предел существует и конечен, то говорят, что несобственный интеграл сходится.

Если предел не существует или бесконечен, то несобственный интеграл расходится.

Аналогичные рассуждения можно привести для несобственных интегралов вида:

Конечно, эти утверждения справедливы, если входящие в них интегралы существуют.

 Пример.

- не существует.

Несобственный интеграл расходится.

  Пример.

 - интеграл сходится

Теорема: Если для всех х (x ³ a) выполняется условие  и интеграл  сходится, то  тоже сходится и  ³ .

Теорема: Если для всех х (x ³ a) выполняется условие  и интеграл  расходится, то  тоже расходится.

 Теорема: Если  сходится, то сходится и интеграл .

В этом случае интеграл  называется абсолютно сходящимся.

17.2. Интеграл от разрывной функции.

 Если в точке х = с функция либо неопределена, либо разрывна, то

Если интеграл  существует, то интеграл  - сходится, если интеграл   не существует, то  - расходится.

 Если в точке х = а функция терпит разрыв, то .

Если функция f(x) имеет разрыв в точке b на промежутке [a, с], то

 Таких точек внутри отрезка может быть несколько.

Если сходятся все интегралы, входящие в сумму, то сходится и суммарный интеграл.

История естествознания свидетельствует, что возможность аксиоматического построения той или иной науки появляется лишь на довольно высоком уровне развития этой науки, на базе большого фактического материала, позволяет отчетливо выявить те основные связи и соотношения, которые существуют между объектами, изучаемыми данной наукой. Образцом аксиоматического построения математической науки является элементарная геометрия. Система аксиом геометрии были изложены Евклидом (около 300 г. до н. э.) в непревзойденном по своей значимости труде - "Начала". Эта система в основных чертах сохранилась и по сей день.
На главную