Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых


Предел и непрерывность функции нескольких переменных.

Понятие функции нескольких переменных.

 При рассмотрении функций нескольких переменных ограничимся подробным описанием функций двух переменных, т.к. все полученные результаты будут справедливы для функций произвольного числа переменных.

 Определение: Если каждой паре независимых друг от друга чисел (х, у) из некоторого множества по какому - либо правилу ставится в соответствие одно или несколько значений переменной z, то переменная z называется функцией двух переменных.

z = f(x, y)

  Определение: Если паре чисел (х, у) соответствует одно значение z, то функция называется однозначной, а если более одного, то – многозначной.

 Определение: Областью определения функции z называется совокупность пар (х, у), при которых функция z существует.

 

 Определение: Окрестностью точки М0(х0, у0) радиуса r называется совокупность всех точек (х, у), которые удовлетворяют условию .

 Определение: Число А называется пределом функции f(x, y) при стремлении точки М(х, у) к точке М0(х0, у0), если для каждого числа e > 0 найдется такое число r >0, что для любой точки М(х, у), для которых верно условие

также верно и условие .

Записывают:

 

Непрерывность функции нескольких переменных.

  Определение: Пусть точка М0(х0, у0) принадлежит области определения функции f(x, y). Тогда функция z = f(x, y) называется непрерывной в точке М0(х0, у0), если

  (1)

причем точка М(х, у) стремится к точке М0(х0, у0) произвольным образом.

 Если в какой – либо точке условие (1) не выполняется, то эта точка называется точкой разрыва функции f(x, y). Это может быть в следующих случаях:

Функция z = f(x, y) не определена в точке М0(х0, у0).

Не существует предел .

Этот предел существует, но он не равен f( x0, y0).

 

Свойства функций нескольких переменных, связанные с их непрерывностью.

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой и

 ограниченной области D, то в этой области найдется по крайней мере одна точка 

N(x0, y0, …), такая, что для остальных точек верно неравенство

f(x0, y0, …) ³ f(x, y, …)

а также точка N1(x01, y01, …), такая, что для всех остальных точек верно неравенство

f(x01, y01, …) £ f(x, y, …)

тогда f(x0, y0, …) = M – наибольшее значение функции, а f(x01, y01, …) = m – наименьшее значение функции f(x, y, …) в области D.

 Непрерывная функция в замкнутой и ограниченной области D достигает по крайней мере один раз наибольшего значения и один раз наименьшего.

 Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, а M и m – соответственно наибольшее и наименьшее значения функции в этой области, то для любой точки m Î [m, M] существует точка

N0(x0, y0, …) такая, что f(x0, y0, …) = m.

 Проще говоря, непрерывная функция принимает в области D все промежуточные значения между M и m. Следствием этого свойства может служить заключение, что если числа M и m разных знаков, то в области D функция по крайней мере один раз обращается в ноль.

 Свойство. Функция f(x, y, …), непрерывная в замкнутой ограниченной области D, ограничена в этой области, если существует такое число К, что для всех точек области верно неравенство .

 Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, то она равномерно непрерывна в этой области, т.е. для любого положительного числа e существует такое число D > 0, что для любых двух точек (х1, y1) и (х2, у2) области, находящихся на расстоянии, меньшем D, выполнено неравенство

Приведенные выше свойства аналогичны свойствам функций одной переменной, непрерывных на отрезке. См. Свойства функций, непрерывных на отрезке.

 

Производная и дифференциал функции нескольких переменных.

Частные производные.

 Определение. Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку М(х, у) и зададим приращение Dх к переменной х. Тогда величина Dxz = f( x + Dx, y) – f(x, y) называется частным приращением функции по х.

 Можно записать

.

  Тогда  называется частной производной функции z = f(x, y) по х.

Обозначение:

 Аналогично определяется частная производная функции по у.

Геометрическим смыслом частной производной (допустим ) является тангенс угла наклона касательной, проведенной в точке N0(x0, y0, z0) к сечению поверхности плоскостью у = у0.

 

Полное приращение и полный дифференциал.

 Определение. Для функции f(x, y) выражение Dz = f( x + Dx, y + Dy) – f(x, y) называется полным приращением.

  Если функция f(x, y) имеет непрерывные частные производные, то

 

Применим теорему Лагранжа (см. Теорема Лагранжа) к выражениям, стоящим в квадратных скобках

здесь

 Тогда получаем

Т.к. частные производные непрерывны, то можно записать равенства:

  Определение. Выражение  называется полным приращением функции f(x, y) в некоторой точке (х, у), где a1 и a2 – бесконечно малые функции при Dх ® 0 и Dу ® 0 соответственно.

 Определение: Полным дифференциалом функции z = f(x, y) называется главная линейная относительно Dх и Dу приращения функции Dz в точке (х, у).

  Для функции произвольного числа переменных:

 

 

Пример. Найти полный дифференциал функции .

  Пример. Найти полный дифференциал функции

 

Геометрический смысл полного дифференциала.

Касательная плоскость и нормаль к поверхности.

Пусть N и N0 – точки данной поверхности. Проведем прямую NN0. Плоскость, которая проходит через точку N0, называется касательной плоскостью к поверхности, если угол между секущей NN0 и этой плоскостью стремится к нулю, когда стремится к нулю расстояние NN0.

 Определение. Нормалью к поверхности в точке N0 называется прямая, проходящая через точку N0 перпендикулярно касательной плоскости к этой поверхности.

 В какой – либо точке поверхность имеет, либо только одну касательную плоскость, либо не имеет ее вовсе.

  Если поверхность задана уравнением z = f(x, y), где f(x, y) – функция, дифференцируемая в точке М0(х0, у0), касательная плоскость в точке N0(x0,y0,(x0,y0)) существует и имеет уравнение:

.

  Уравнение нормали к поверхности в этой точке:

  Геометрическим смыслом полного дифференциала функции двух переменных f(x, y) в точке (х0, у0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х0, у0) к точке (х0+Dх, у0+Dу).

 Как видно, геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.

 

Пример. Найти уравнения касательной плоскости и нормали к поверхности

в точке М(1, 1, 1).

  Уравнение касательной плоскости:

  Уравнение нормали:

В XVII веке запросы естествознания и техники привели к созданию методов, позволяющих математически изучать движение, процессы изменения величин, преобразование геометрических фигур. С употребления переменных величин в аналитической геометрии и создание дифференциального и интегрального исчисления начинается период математики переменных величин. Великим открытиям XVII века является введенная Ньютоном и Лейбницем понятие "бесконечно малой величины", создание основ анализа бесконечно малых (математического анализа).
На главную