Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых


Интегрирование по частям. В ряде случаев помогает «формула интегрирования по частям». Для неопределенного интеграла она имеет вид

 , (5.2)

для определенного

 , (5.3)

При этом важно учитывать следующее.

1) Если подынтегральная функция содержит произведение многочлена от x на функции , то в качестве u выбирается многочлен, а оставшееся под знаком интеграла выражение относится к dv.

2) Если подынтегральная функция содержит обратные тригонометрические () или логарифмические () функции, то в качестве u выбирается одна из них.

Пример 5.4. Найти: а) ; б) .

Решение. В случае а) применяем формулу (5.2) и второе правило. Именно, полагаем . Тогда . Далее, , а потому . Следовательно, . В полученном интеграле выделим целую часть подынтегральной функции (так поступают, когда степень числителя не меньше степени знаменателя):

.

Окончательно решение выглядит так:

В примере б) используем (5.3) и первое из правил.

5.4. Интегрирование выражений, содержащих квадратный трехчлен. Основные идеи заключаются в выделении в квадратном трехчлене полного квадрата и в проведении линейной замены, позволяющей свести исходный интеграл к табличным вида 10)-16).

Пример 5.5. Найти: а) ; б) ; в) .

Решение. В случае а) действуем следующим образом:

,

поэтому (с учетом 13) )

При решении примера б) потребуются дополнительные преобразования, связанные с присутствием переменной в числителе подынтегральной функции. Выделив полный квадрат в знаменателе (), получим:

Для второго из интегралов в силу 11) (табл.2) имеем: . В первом интеграле проведем внесение под знак дифференциала:

.

Таким образом, собирая все вместе и возвращаясь к переменной x, получаем:

В примере в) также предварительно выделяем полный квадрат:

.

Далее проводим замену переменной () и окончательно имеем:

5.5. Интегрирование простейших тригонометрических функций. При интегрировании выражений вида  (где m и n – натуральные числа) рекомендуется принимать во внимание следующие правила.

1) Если обе степени четные, то применяются формулы «понижения степени»: .

2) Предположим, что какое-либо из чисел m и n – нечетное. Например, n=2k+1. В этом случае одну из степеней функции cosx «отщепляют», чтобы внести под знак дифференциала (т.к. ). В оставшемся выражении  с помощью основного тригонометрического тождества  выражают через  (). После преобразования подынтегрального выражения (и с учетом свойства линейности) получается алгебраическая сумма интегралов вида , каждый из которых можно найти с помощью формулы 2) из таблицы 2: .

Кроме того, в некоторых случаях полезны также формулы

 ; (5.4)

 ; (5.5)

 . (5.6)

Пример 5.6. Найти: а) ; б) ; в) .

Решение. а) В подынтегральную функцию входит нечетная (5-я) степень sinx, поэтому действуем по второму правилу, учитывая, что .

В примере б) воспользуемся формулой (5.4), линейностью неопределенного интеграла, равенством  и табличной формулой 4):

В случае в) последовательно понижаем степень, учитываем линейность, возможность внесения константы под знак дифференциала и нужные табличные формулы:

В течение этого периода математические исследования имеют дело лишь с достаточно ограниченным запасом основных понятий, возникших для удовлетворения самых простых запросов хозяйственной жизни. Развивается арифметика - наука о числе. В период развития элементарной математики появляется теория чисел, выросшая постепенно из арифметики. Создается алгебра, как буквенное исчисление. Обобщается труд большого числа математиков, занимающихся решением геометрических задач в стройную и строгую систему элементарной геометрии - геометрию Евклида, изложенную в его замечательной книге "Начала" (300 лет до н. э.).
На главную