Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых


Предел функции при стремлении аргумента к бесконечности.

  Определение. Число А называется пределом функции f(x) при х®¥, если для любого числа e>0 существует такое число М>0, что для всех х, ïхï>M выполняется неравенство

При этом предполагается, что функция f(x) определена в окрестности бесконечности.

Записывают:  

 

 Графически можно представить: 

 

Аналогично можно определить пределы  для любого х>M и

 для любого х<M.

Основные теоремы о пределах.

  Теорема 1. , где С = const.

 Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а.

 Теорема 2.

Доказательство этой теоремы будет приведено ниже.

 Теорема 3.

 Следствие.

 Теорема 4.  при

 Теорема 5. Если f(x)>0 вблизи точки х = а и , то А>0.

Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0.

 Теорема 6. Если g(x) £ f(x) £ u(x) вблизи точки х = а и , то и .

 Определение. Функция f(x) называется ограниченной вблизи точки х = а, если существует такое число М>0, что ïf(x)ï<M вблизи точки х = а.

 Теорема 7. Если функция f(x) имеет конечный предел при х®а, то она ограничена вблизи точки х = а.

 

Доказательство. Пусть , т.е. , тогда

 или

, т.е.

где М = e + ïАï

Теорема доказана.

Бесконечно малые функции.

 Определение. Функция f(x) называется бесконечно малой при х®а, где а может быть числом или одной из величин ¥, +¥ или -¥, если .

 Бесконечно малой функция может быть только если указать к какому числу стремится аргумент х. При различных значениях а функция может быть бесконечно малой или нет.

 Пример. Функция f(x) = xn является бесконечно малой при х®0 и не является бесконечно малой при х®1, т.к. .

 Теорема. Для того, чтобы функция f(x) при х®а имела предел, равный А, необходимо и достаточно, чтобы вблизи точки х = а выполнялось условие

f(x) = A + a(x),

где a(х) – бесконечно малая при х ® а (a(х)®0 при х ® а).

 Свойства бесконечно малых функций:

Сумма фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.

Произведение фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.

Произведение бесконечно малой функции на функцию, ограниченную вблизи точки х = а является бесконечно малой функцией при х®а.

Частное от деления бесконечно малой функции на функцию, предел которой не равен нулю есть величина бесконечно малая.

Используя понятие бесконечно малых функций, приведем доказательство некоторых теорем о пределах, приведенных выше.

Доказательство теоремы 2. Представим f(x) = A + a(x), g(x) = B + b(x), где

, тогда

f(x) ± g(x) = (A + B) + a(x) + b(x)

A + B = const, a(х) + b(х) – бесконечно малая, значит

Теорема доказана.

Доказательство теоремы 3. Представим f(x) = A + a(x), g(x) = B + b(x), где

, тогда

A×B = const, a(х) и b(х) – бесконечно малые, значит

Теорема доказана.

Бесконечно большие функции и их связь с бесконечно малыми.

 Определение. Предел функции f(x) при х®а, где а- число, равен бесконечности, если для любого числа М>0 существует такое число D>0, что неравенство

ïf(x)ï>M

выполняется при всех х, удовлетворяющих условию

0 < ïx - aï < D

Записывается .

Собственно, если в приведенном выше определении заменить условие ïf(x)ï>M на f(x)>M, то получим:

а если заменить на f(x)<M, то:

Графически приведенные выше случаи можно проиллюстрировать следующим образом:

 


  a x a x a x

 Определение. Функция называется бесконечно большой при х®а, где а – чосли или одна из величин ¥, +¥ или -¥, если , где А – число или одна из величин ¥, +¥ или -¥.

  Связь бесконечно больших и бесконечно малых функций осуществляется в соответствии со следующей теоремой.

 Теорема. Если f(x)®0 при х®а (если х®¥ ) и не обращается в ноль, то

Сравнение бесконечно малых функций.

 Пусть a(х), b(х) и g(х) – бесконечно малые функции при х ® а. Будем обозначать эти функции a, b и g соответственно. Эти бесконечно малые функции можно сравнивать по быстроте их убывания, т.е. по быстроте их стремления к нулю.

 Например, функция f(x) = x10 стремится к нулю быстрее, чем функция f(x) = x.

 Определение. Если , то функция a называется бесконечно малой более высокого порядка, чем функция b.

 Определение. Если , то a и b называются бесконечно малыми одного порядка.

 Определение. Если то функции a и b называются эквивалентными бесконечно малыми. Записывают a ~ b.

 Пример. Сравним бесконечно малые при х®0 функции f(x) = x10 и f(x) = x.

т.е. функция f(x) = x10 – бесконечно малая более высокого порядка, чем f(x) = x.

 Определение. Бесконечно малая функция a называется бесконечно малой порядка k относительно бесконечно малой функции b, если предел  конечен и отличен от нуля.

 Однако следует отметить, что не все бесконечно малые функции можно сравнивать между собой. Например, если отношение  не имеет предела, то функции несравнимы.

 

  Пример. Если , то при х®0 , т.е. функция a - бесконечно малая порядка 2 относительно функции b.

 Пример. Если , то при х®0  не существует, т.е. функция a и b несравнимы.

Свойства эквивалентных бесконечно малых.

  1) a ~ a

 2) Если a ~ b и b ~ g, то a ~ g

 3) Если a ~ b, то b ~ a

 4) Если a ~ a1 и b ~ b1 и , то и  или .

Следствие: а) если a ~ a1 и , то и

 б) если b ~ b1 и , то

Свойство 4 особенно важно на практике, т.к. оно фактически означает, что предел отношения бесконечно малых не меняется при замене их на эквивалентные бесконечно малые. Этот факт дает возможность при нахождении пределов заменять бесконечно малые на эквивалентные им функции, что может сильно упростить вычисление пределов.

Связь математики и естествознания приобретает все более сложные формы. Возникают новые теории. Новые теории возникают не только в результате запросов естествознания и техники, но и в результате внутренней потребности математики. Замечательным примером такой теории является "воображаемая геометрия" Н. И. Лобачевского. Развитие математики в XIX и XX веках позволяет отнести ее к периоду современной математики. Развитие самой математики, "математизация" различных областей науки, проникновение математических методов во многие сферы практической деятельности, прогресс вычислительной техники привели к появлению новых математических дисциплин, например, исследование операций, теория игр, математическая экономика и другие.
На главную