Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых


ПРИМЕР. Найти неопределённый интеграл .

Решение.

 Применим формулу интегрирования по частям: . В данном случае:

. Подставляя эти выражения в формулу, получим:

.

ПРИМЕР 17. Вычислить интеграл  или установить его расходимость.

Решение.

  Точка  является особой точкой, поскольку подынтегральная функция имеет в ней бесконечный разрыв. Поэтому:

  - получили бесконечный предел.

Таким образом, данный интеграл расходится.

ПРИМЕР 18. Решить уравнение: .

Решение.

Данное уравнение является дифференциальным уравнением первой степени с Разделяющимися переменными. Разделим переменные:

.

Проинтегрируем части последнего равенства:

.

Отсюда:

.

Окончательно имеем:

 - общее решение данного уравнения.

ПРИМЕР 19. Решить уравнение: .

Решение.

Данное дифференциальное уравнение относится к типу однородных дифференциальных уравнений

 ,

которые решаются с помощью подстановки

.

Отсюда:

.

После подстановки в исходное уравнение получим:

.

Это – уравнение с разделяющимися переменными. Разделяем переменные:

Интегрируя обе части, получим:

Используя обратную подстановку, получим:

Окончательно имеем обще решение в виде:

.

Теперь, чтобы найти частное решение, подставляем в общее решение начальное условие:

.

Искомое частное решение:

.

 

ИНТЕГРАЛЫ

Задача 1. Вычислить .

Решение. Интеграл можно свести к табличному (1), если сделать замену . Дифференцируя обе части равенства, получим , т.е. . Интеграл определенный, поэтому необходимо изменить пределы интегрирования: если , то ; если , то .

Следовательно,

Задача 2. Вычислить .

Решение. Сведем данный интеграл к табличному (3), сделав замену переменной . Тогда  Изменяем пределы интегрирования: если , то ; если , то .

Получаем

Задача 3. Вычислить .

Решение. Интеграл относится к группе интегралов: , , , где - многочлен степени п. Вычисление таких интегралов выполняется интегрированием по частям по формуле (17)

  Если за и принять многочлен , то в результате применения формулы (17) интеграл упростится (уменьшится степень многочлена).

Обозначим  Найдем

  Тогда

Задача 4. Вычислить .

Решение. Этот интеграл относится к группе интегралов вида , , ,

  (- многочлен степени п) и вычисляется по формуле интегрирования по частям (17). В результате применения этой формулы исходный интеграл упростится, если за и принимать функции . Итак, положим  

Тогда

Получаем

Задача 5. Вычислить .

Решение. Выполним замену переменной:

Получим  

В подынтегральном выражении выделим целую часть:

Тогда

В интеграле  сделаем замену:

,

при этом

Возвращаясь к переменной х, получим

Задача 6. Вычислить .

Решение. Это интеграл вида .

Одно из чисел m и n нечетное (в данном случае ), поэтому интеграл можно вычислить следующим образом. Преобразуем подынтегральное выражение

, следовательно, можно выполнить замену: .

В результате получим

Задача 7. Вычислить .

Решение. Это интеграл вида  с чётными m и n (в данном случае ). Воспользуемся формулой (19) понижения степени

,

получим

Задача 8. Вычислить .

Решение. Применяя тригонометрическую формулу (23)

,

получим

Задача 9. Вычислить .

Решение. Выделим в числителе производную от знаменателя:

Первый интеграл вычисляем, сделав замену , тогда . Имеем

Второй интеграл преобразуем, выделив в знаменателе полный квадрат: . Тогда с учетом формулы (14) получим

Итак, исходный интеграл равен

Задача 10. Вычислить .

Решение. Выделим в числителе производную подкоренного выражения

Первый интеграл вычисляется путем замены , тогда  Имеем

Второй интеграл преобразуем путем выделения полного квадрата в подкоренном выражении:

 

Тогда с учетом формулы (16) получим

Следовательно, исходный интеграл равен

Задача 11. Вычислить .

Решение. При интегрировании иррациональных выражений вида  (здесь R – рациональная функция;  - целые числа) подстановка , где к – наименьшее общее кратное знаменателей , позволяет избавиться от иррациональности. В данном случае  Наименьшее общее кратное этих чисел равно 6. Применяем подстановку  

Тогда  и

Возвращаясь к переменной х с учетом того, что , получим

Задача 12. Вычислить .

Решение. При вычислении интегралов вида , где R – рациональная функция, используется универсальная тригонометрическая подстановка , приводящая к интегралам от рациональных относительно t функций, при этом

, .

Из равенства  находим .

В данном случае получаем

Сделаем замену

Тогда

Возвращаясь к переменной х, получим

Задача 13. Вычислить .

Решение. Интегралы вида , , , где R – рациональная функция, приводятся к интегралам вида , если выполнить замену переменной:

- для первого интеграла  (или );

- для второго интеграла (или );

- для третьего интеграла  (или ).

Данный интеграл вычисляем заменой .

Тогда .

Получаем

.

,

тогда

Возвращаясь к старой переменной при , получаем

Индукция - метод исследования, в котором общий вывод строится не основе частных посылок. Дедукция - способ рассуждения, посредством которого от общих посылок следует заключение частного характера. Математика играет важную роль в естественнонаучных, инженерно-технических и гуманитарных исследованиях. Причина проникновения математики в различные отрасли знаний заключается в том, что она предлагает весьма четкие модели для изучения окружающей действительности в отличие от менее общих и более расплывчатых моделей, предлагаемых другими науками. Без современной математики с ее развитым логическими и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности.
На главную