Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Начертательная геометрия решение практических задач Комплексный чертех Аксонометрические проекции Позиционные задачи

Поверхности вращения

Это поверхности, которые описываются какой-либо линией при ее вращении вокруг неподвижной оси.

а) При вращении прямой образуются:

цилиндр вращения (прямая параллельна оси вращения);

конус вращения (прямая пересекается с осью вращения).

б) При вращении окружности образуется:

сфера (вращением окружности вокруг диаметра);

тор (вращением окружности вокруг оси, лежащей в

плоскости окружности, но не проходящей через ее центр);

в) При вращении кривой второго порядка образуются:

эллипсоид вращения (вращением эллипса);

параболоид вращения (вращением параболы);

 однополостный гиперболоид;

 2-х полостной гиперболоид.

13.2 Линейчатые поверхности

Это поверхности, описываемые какой -либо прямой (образующей) при ее движении в пространстве по какому-нибудь закону:

цилиндрическая поверхность (образуется движением прямой линии по некоторой кривой линии, при этом прямая имеет постоянное направление);

коническая поверхность (образуется движением прямой линии, проходящей через неподвижную точку, по некоторой кривой линии, называемой направляющей);

 торс и т.д.

Если направляющая линия является ломаной линией, то образуются:

призматическая поверхность (образующая имеет постоянное направление);

пирамидальная поверхность (образующая проходит через неподвижную точку).

Имеются и более сложные линейчатые поверхности:

цилиндроид;

 коноид;

 косая плоскость и т. д.

Всякая прямая пересекается с такой поверхностью в двух точках, а плоскость пересекает ее по кривой второго порядка.

Поверхности второго порядка

коническая поверхность (конус вращения и эллиптический конус, получаемый деформацией параллелей конуса вращения в эллипсы);

цилиндрическая поверхность (цилиндр вращения, эллиптический, параболический и гиперболический цилиндры.

эллиптический цилиндр может быть получен из цилиндра вращения деформацией его параллелей в эллипсы);

эллипсоид (эллипсоид вращения, в частности сфера; трехосный эллипсоид, получаемый из эллипсоида вращения деформацией его параллелей в эллипсы);

 параболоид, гиперболоиды и др.

Винтовые поверхности

Они описываются какой-либо линией (образующей) при ее винтовом движении. Если образующая винтовой поверхности прямая линия, то поверхность называется линейчатой винтовой поверхностью или геликоидом (пример – шнек). Различают прямой и наклонный геликоиды. В первом случае образующая во всех положениях перпендикулярна оси t, во втором - пересекает ось геликоида под постоянным углом отличным от прямого.

Циклические поверхности

Они описываются какой-либо окружностью (образующей) постоянного или переменного радиуса при ее произвольном движении.

К циклическим можно отнести все поверхности вращения и те из поверхностей второго порядка, которые имеют круговые сечения. Кроме этих к циклическим относят каналовые и трубчатые поверхности.

Каналовые поверхности (рисунок 5-5) образуются движением окружности переменного радиуса, центр которой 0 перемещается по заданной кривой (направляющей l ), а плоскость окружности остается перпендикулярной этой кривой.

Трубчатая поверхность образуется движением окружности постоянного радиуса – в этом ее отличие от каналовой поверхности.

13.6 Топографические поверхности

Образование их не подчинено какому-либо закону. К таким поверхностям относятся поверхности земной коры, корпуса судов, обшивки самолетов, автомобилей.

На чертеже эти поверхности изображаются при помощи семейства некоторых линий (рисунок 5-6).

Из сказанного выше видно, что некоторые поверхности могут быть отнесены к нескольким классам одновременно

Начертательная геометрия, ее методы и положения применяются почти во всех областях науки и техники. В частности, вопросами применения начертательной геометрии в химии занимался еще Гаспар Монж, когда в содружестве с Бертле разрабатывал способ изготовления пороха во времена французской революции. В современной химии и металлографии графические методы отображения и анализа систем приобрели широкое распространение. Графическое задание позволяет наглядно представить состояние вещества и его свойства и дает возможность решения практических задач, особенно - по физико-химическому анализу. В настоящее время разработано большое количество графических способов решения всевозможных теоретических и практических задач, связанных с построением диаграмм "состава" и "состав-свойство".
Учебник Решение пространственных задач на комплексном чертеже