Люверсы по ссылке импортного производства.
Начертательная геометрия решение практических задач Комплексный чертех Аксонометрические проекции Позиционные задачи Люверсы по ссылке импортного производства.

Аксонометрические проекции

15. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ.

16. ПОКАЗАТЕЛИ ИСКАЖЕНИЯ ПО АКСОНОМЕТРИЧЕСКИМ ОСЯМ.

17. ОРТОГОНАЛЬНЫЕ И КОСОУГОЛЬНЫЕ АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ.

18. СТАНДАРТНЫЕ АКСОНОМЕТРИЧЕСКИЕ СИСТЕМЫ.

15.  Основные понятия и определения

Аксонометрические изображения довольно широко применяются в конструкторской работе. Это объясняется тем, что они обладают большой наглядностью и сравнительно простым построением.

Особое значение приобретают аксонометрические изображения еще и потому, что в наши дни все большее внимание уделяется вопросам эстетики промышленных форм, внешнего вида изделий (дизайну).

Слово "аксонометрия" в переводе с греческого означает "измерения по осям". Аксонометрическая проекция - это чертеж, состоящий из одной параллельной проекции данного оригинала, дополненной пространственной системой координат, к которой предварительно был отнесен изображаемый оригинал.

Рассмотрим пример получения аксонометрической проекции.

Возьмем точку А, отнесенную к пространственной системе прямоугольных координат XYZ. Выберем плоскость проекций П' и спроецируем на нее по некоторому данному направлению S, точку А с системой прямоугольных координат (рисунок 6-1).

0 - начало координат; 0XYZ- натуральная система координат; ОАxА1А - координатная ломаная; O'X'Y'Z' - аксонометрическая система координат; 0'А'хА'1А' - аксонометрическая координатная ломаная; А'- аксонометрическая проекция точки А; Х,Y,Z- натуральные координаты точки А; Х',Y',Z'-аксонометрические координаты точки А.

Из построения следует, что каждой точке А пространства на плоскости проекций П' соответствует определенная точка А'. Однако обратное утверждение будет неверно т.к. точке А' на П' соответствует любая точка проецирующего луча АА'.

Чтобы устранить эту неопределенность и обеспечить взаимную однозначность между точками пространства и аксонометрическими проекциями, на плоскость П' проецируют и одну ортогональную проекцию т. А - А1. Ее аксонометрическую проекцию А'1 называют вторичной проекцией т.А. В этом случае А' и А'1 определяют положение т. А в пространстве (зная А1 находим Ах; по Ах → А'х; по А'х и А1А').

16. ПОКАЗАТЕЛИ ИСКАЖЕНИЯ ПО АКСОНОМЕТРИЧЕСКИМ ОСЯМ

В общем случае длина отрезков осей координат в пространстве не равна длине их проекций. Искажение отрезков осей координат при их проецировании на П' характеризуется коэффициентами искажения.

Коэффициентом искажения называется отношение длины проекции отрезка оси к его натуральной длине.

Приняты коэффициенты искажения по осям:

 По оси X:U =О'Х'/ОХ=О'А'х/ОАх=Х'АХА;

 По оси Y: V=O'Y'/OY=A'xA'/AxA=Y'A/YA

 По оси Х: W=O'Z'/OZ=A'1A/A1A=Z'AZA.

В зависимости от соотношения коэффициентов искажения по осям различают три вида аксонометрических проекций:

1) изометрические - коэффициенты искажения по всем осям равны между собой - U=V=W;

2) диметрические - - коэффициенты искажения по двум осям равны между собой, а по третьей отличаются от первых двух –

U=V≠W; U=W≠V; V=W≠U.

3) триметрические – коэффициенты искажения по всем осям различны-

U≠V≠W, где U≠W.

Проекции прямых, параллельных П1, П2, П3 плоскостям проекций. Проекции прямых, перпендикулярных П1, П2, П3 плоскостям проекций. Проекции прямой общего положения и прямых частного положения. Определение следов прямых. Натуральные размеры отрезков. Свойство принадлежности точки прямой. Соотношение отрезков прямой. Взаимное положение прямых в пространстве и их свойства применительно к ортогональному чертежу. Проекции плоских углов. Свойства проецирования прямого угла.
Учебник Решение пространственных задач на комплексном чертеже