Начертательная геометрия решение практических задач Комплексный чертех Аксонометрические проекции Позиционные задачи

ПОЗИЦИОННЫЕ ЗАДАЧИ.

ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ТОЧЕК.

ВЗАИМНОЕ ПОЛОЖЕНИЕ ТОЧКИ И ПРЯМОЙ.

ВЗАИМНОЕ ПОЛОЖЕНИЕ ТОЧКИ И ПЛОСКОСТИ.

ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПРЯМЫХ.

Позиционные задачи – это задачи, в которых определяется взаимное расположение различных геометрических фигур относительно друг друга.

Различают прямые и обратные позиционные задачи:

прямые – задачи на взаимопринадлежность (построение точки на линии или поверхности, проведение линии на поверхности или поверхности через заданные линии, задачи на пересечение);

обратные – в которых определяется взаимное расположение точек, линий, плоскостей.

19. ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ТОЧЕК

Рассмотрим возможные варианты взаимного расположения двух точек (рисунок 7-1).

а) б) в) г)

 А=В А А=В А

 ∆Н

  В В

 ∆р

 В А 

 А=В А=В А ∆f В

 Рисунок 7-1

а) две точки в пространстве могут либо совпадать, либо не совпадать. Если две точки совпадают, то на видах спереди и сверху их проекции совпадают (рисунок 7-1а).

Если же точки не совпадают, то их проекции не совпадают либо на виде спереди (7-1б), либо на виде сверху (7-1в), либо на двух видах одновременно (7-1г).


б) Точки, которые совпадают на виде сверху (на горизонтальной проекции) называют горизонтально-конкурирующими. На рисунке7-1б точка А находится выше точки В и точно над ней, поэтому на виде спереди обе точки видимы, а на виде сверху видна точка А, имеющая большую высоту.

  в) Точки, которые совпадают на виде спереди (на фронтальной проекции) называют фронтально-конкурирующими. На виде сверху обе точки видимы, а на виде спереди видна та из них, что ближе к наблюдателю, т.е. точка А.

г) По рисунку 7-1г определяем, что точка А выше точки В на величину ΔН; по виду сверху отмечаем, что от наблюдателя точка А дальше точки В на величину Δf ; на обоих видах определяется, что точка А левее точки В на величину Δр.

20. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ТОЧКИ И ПРЯМОЙ

Точка может находиться либо на прямой, либо вне её.

а) Если точка находится на прямой, тогда на основании свойства принадлежности её проекции будут принадлежать проекциям прямой – точка А (рисунок 7-2);

б)  Если же точка расположена вне прямой, то тогда хотя бы на одном из видов точка не будет находиться на прямой:

точка В на виде сверху не лежит на прямой l, а находится ближе, чем фронтально-конкурирующая с ней точка, отмеченная крестиком; следовательно точка В находится перед прямой l;

точка С, как это следует из вида спереди, находится ниже прямой l, т.к. она расположена ниже горизонтально-конкурирующей с ней точки, отмеченной крестиком и лежащей на прямой;

анализируя положение точки D относительно прямой l, приходим к выводу, что точка D находится над прямой l, что определяется по положению точки D на виде спереди. По виду сверху отмечаем, что точка D находится за прямой l.

Определить взаимное положение точки и прямой профильного положения р по двум видам не представляется возможным, т.к. такая прямая на видах спереди и сверху совпадает с линиями связи по направлению (рисунок 7-3).


Получить ответ можно с помощью построения профильной проекции (вида слева).

Так по виду слева определяем, что т. М находится перед прямой (Δf) и над ней (ΔН), т.к. она лежит ближе фронтально-конкурирующей и выше горизонтально -конкурирующих точек, отмеченных крестиками.

Точка N находится ниже (под) прямой l и за (дальше) неё.

Проекции прямых, параллельных П1, П2, П3 плоскостям проекций. Проекции прямых, перпендикулярных П1, П2, П3 плоскостям проекций. Проекции прямой общего положения и прямых частного положения. Определение следов прямых. Натуральные размеры отрезков. Свойство принадлежности точки прямой. Соотношение отрезков прямой. Взаимное положение прямых в пространстве и их свойства применительно к ортогональному чертежу. Проекции плоских углов. Свойства проецирования прямого угла.
Учебник Решение пространственных задач на комплексном чертеже