Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Начертательная геометрия решение практических задач Комплексный чертех Аксонометрические проекции Позиционные задачи

Пересечение плоскости и поверхности, определение натуры сечения

Плоские сечения многогранных и кривых поверхностей представляют собой замкнутые фигуры.

Пересечение многогранника проецирующей плоскостью

Сечением многогранника плоскостью является многоугольник, вершинами которого служат точки пересечения ребер многогранника и секущей плоскости.

Построение сечения сводится к многократному решению задачи на пересечение прямой (ребра) с плоскостью или двух плоскостей. Первое решение проще, поэтому для нахождения сечений многогранника чаще используют его.

Пример 5. Построить сечение поверхности пирамиды SАВС наклонной плоскостью Б и определить натуру сечения (рисунок 9-1).

При решении этой задачи нужно использовать вырожденный вид секущей плоскости Б. В этом случае задача сводится к построению точки пересечения прямой общего положения и плоскости частного положения.

Сечение на виде спереди имеет вырожденный вид и совпадает с изображением плоскости Б. Точки 1,2,3, являются точками пересечения ребер пирамиды с плоскостью Б.

Для построения сечения на виде сверху достаточно найти указанные точки на этом виде и соединить их (с учетом видимости) отрезками прямых.

Эту же задачу (построения сечения) можно свести к задаче построения линии пересечения двух плоскостей, т.к. каждый отрезок ломаной линии сечения есть линия пересечения плоскости Б с той или иной гранью пирамиды.

Натуру сечения построим с помощью дополнительного вида по направлению фронтали f- перпендикулярной наклонной плоскости Б. Отметим базы отсчета глубин (т.к. сохраняются глубины точек).. На виде сверху удобно базу отсчета провести через дальнюю точку сечения, т.3. На дополнительном виде база отсчета проводится на свободном поле чертежа перпендикулярно линиям связи (направлению проецирования). Замеряя глубины точек 1,2,3 на виде сверху, откладываем полученные величины на соответствующих линиях связи от базы отсчета на дополнительном виде. Полученные точки соединяем между собой ломаной линией.

Натуру сечения можно определить иначе - способом засечек. Для этого нужно найти натуральную величину сторон 1-2,2-3,3-1 способом прямоугольного треугольника.

26.2 Пересечение кривой поверхности плоскостью

Линия пересечения кривой поверхности с плоскостью представляет собой плоскую кривую (которая может распадаться и на прямые линии в случае пересечения плоскости с линейчатой поверхностью по ее образующим).

Построение линии пересечения производят по ее отдельным точкам. Основной способ построения точек линии пересечения поверхности с плоскостью - способ конкурирующих линий.

При выборе конкурирующих линий следует руководствоваться простотой построения линий на поверхности. Они должны быть графически простыми линиями (т.е. прямыми или окружностями) и кроме того не искажаться на одном из видов. Если секущая плоскость имеет вырожденный вид, то точки линии пересечения определяются сразу на пересечении секущей плоскости с графически-простыми линиями поверхности.


26.2.1 Проецирующая плоскость

Пример 6. Построить сечение поверхности вращения наклонной плоскостью Б. Определить натуру сечения (рисунок 9-2).

На виде спереди сечение имеет вырожденный вид, который совпадает с изображением наклонной плоскости.

Для построения сечения на виде сверху сначала находим опорные точки - самую высокую (она же крайняя правая) т.А и самые низкие (и крайние левые) В и С. Точка А лежит на главном меридиане и отделяет видимую часть сечения (и поверхности) от невидимой. Точки В и С принадлежат основанию.

Для построения промежуточных точек линии сечения на поверхности проводим ряд графически-простых линий - параллелей (горизонталей h). C их помощью построены точки 1,2,3,4,5,6. Полученные точки соединяем плавной кривой.

Натуральную величину сечения строим с помощью линии наибольшего уклона (ЛНУ), которая в данном случае совпадают с осью симметрии сечения, параллельна фронтальной плоскости и является высотой сечения.

Для этого на свободном месте чертежа проводим вертикальную прямую, на которой откладываем "высоту" сечения, равную натуральной величине ЛНУ (замеренной на виде спереди). На "высоте" откладываем расстояние между отдельными горизонталями наклонной плоскости, на которых лежат точки линии сечения. Эти расстояния замеряем так же на виде спереди. Через полученные точки на "высоте" сечения проводим перпендикулярно ей горизонтали и на них откладываем расстояния до точек 1,2,3,4,5,6,С и В измеренные на виде сверху от ЛНУ. Полученные точки соединим плавной линией.

Построение точки пересечения прямой частного положения с плоскостью общего положения, прямой общего положения, с плоскостью частного положения. Построение линии пересечения плоскости частного положения с плоскостью общего положения. Пересечение прямой общего положения с плоскостью общего положения. Пересечение плоскостей общего положения. Метод секущих плоскостей.
Учебник Решение пространственных задач на комплексном чертеже