Начертательная геометрия решение практических задач Комплексный чертех Аксонометрические проекции Позиционные задачи

Заранее известен вид кривой (второй тип задач)

 В практике бывает так, что заранее известен вид кривой, получающейся при пересечении поверхности плоскостью, и которая может быть построена при помощи основных элементов, определяющих эту кривую.

Так, например, сфера пересекается плоскостью всегда по окружности, и поэтому нет необходимости строить натуральный вид сечения по точкам (рисунок 9-3).

Цилиндр вращения может пересекаться плоскостью по окружности, эллипсу или двум прямым. Положение секущей плоскости при этом показано на рисунке 9-4.

В сечении конуса вращения плоскостью получаются все виды кривых второго порядка (конические сечения): окружность, эллипс, парабола, гипербола и пара прямых (рисунок 9-5). Окружность имеет место, если секущая плоскость перпендикулярна оси конуса.

Эллипс - секущая плоскость не параллельна ни одной образующей (пересекает все).

Парабола–секущая плоскость параллельна одной образующей конуса.

Гипербола–секущая плоскость параллельна двум образующим конуса.

Пара прямых – получается, если секущая плоскость проходит через вершину конуса. При этом прямые пересекаются в вершине.

26.3. Пересечение поверхности плоскостью общего положения

Пример 7. Построить линию пересечения вертикальной призмы плоскостью общего положения Б (а//b), (рисунок 9-6).

Вся боковая поверхность призмы на виде сверху вырождается в треугольник; поэтому и сечение здесь совпадает с гранями призмы и находится в пределах отсека плоскости ограниченной линией PNМ.

Для построения этой линии на виде спереди необходимо определить положение точек M,N,P.

Точки Р и М принадлежат прямой а. Для построения т.N в плоскости Б проведем вспомогательную прямую 1-М.

Пример 8. Построить линию пересечения вертикального цилиндра плоскостью общего положения Б(АВС), (рисунок 9-7).

В данном случае имеем ответ на виде сверху, т.к. поверхность цилиндра вырождается здесь в окружность и линия пересечения совпадает с боковой поверхностью цилиндра NНQРМ.

Для построения ее на виде спереди используем ряд вспомогательных прямых в секущей плоскости, т.е. решаем задачу на построение точки на плоскости по ее заданному виду.

Видимость определяем с помощью пространственного представления.

Пример 9. Построить линию пересечения плоскости общего положения Б (а//b) с поверхностью пирамиды (рисунок 9-8). Для построения сечения найдем точки пересечения ребер пирамиды с данной плоскостью, для чего трижды решим задачу на пересечение прямой общего положения с плоскостью общего положения.

Возьмем на плоскости вспомогательные прямые 1-2, 3-4 и 5-6 фронтально конкурирующие соответственно с ребрами SA, SB и SC и выясним их взаимное положение.

Так как ребра пирамиды пересекаются в одной точке S, то и все конкурирующие прямые будут пересекаться в точке S' фронтально-конкурирующей с вершиной S . В пересечении вспомогательных прямых с соответствующими ребрами пирамиды находим вершины сечения, которые соединяем с учетом видимости отрезками прямых.

Пример 10. Рассмотрим построение линии среза технической детали, ограниченной несколькими поверхностями, одной фронтальной плоскостью Ф (рисунок 9-9).

Деталь представляет собой некоторое тело вращения, ограниченное поверхностью конуса, цилиндра и шара. Точки линии среза на поверхности конуса строятся при помощи параллелей р. Построение начинаем с нахождения крайней левой точки, для чего проводим на виде слева параллель р1, касательную к плоскости среза (радиуса R1) и находим ее положение на виде спереди. Для построения остальных точек проводим ряд параллелей, начиная их построение с вида спереди. Затем строим их на виде слева и находим точки пересечения с фронтальной плоскостью - это и будут точки линии среза.

Линия среза на цилиндре представляет собой пару прямых, а- на сфере - окружность, для построения которых точки находить не нужно.

Построение точки пересечения прямой частного положения с плоскостью общего положения, прямой общего положения, с плоскостью частного положения. Построение линии пересечения плоскости частного положения с плоскостью общего положения. Пересечение прямой общего положения с плоскостью общего положения. Пересечение плоскостей общего положения. Метод секущих плоскостей.
Учебник Решение пространственных задач на комплексном чертеже