Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Начертательная геометрия решение практических задач Комплексный чертех Аксонометрические проекции Позиционные задачи

Вертикальная прямая (горизонтально-проецирующая)

Это прямая, перпендикулярная горизонтальной плоскости Г.

Отрезок, отложенный на данной прямой, на видах спереди и слева изображается в натуральную величину (рисунок 2-4), а на виде сверху - как точка, совпадающая с проекцией прямой i. Точки А и В называются горизонтально-конкурирующими (совпадающими).

Прямая перпендикулярная фронтальной плоскости (фронтально-проецирующая)

На видах сверху и слева отрезок такой прямой изображается в натуральную величину, а на виде спереди - в виде точки (рисунок 2-5). Точки С и D называются фронтально-конкурирующими.

Прямая перпендикулярная профильной плоскости (профильно-проецирующая)

Такая прямая показана на рисунке 2-6. Точки А и В здесь – профильно-конкурирующие.

Прямые наибольшего уклона плоскости и определение углов наклона плоскости к плоскостям уровня

В любой плоскости общего положения можно провести множество различных прямых. Из этого множества прямых выделяют ряд прямых, которые называют главными линиями данной плоскости. К таким прямым относят:

 горизонтали;

 фронтали;

  профильные прямые;

 линии наибольшего уклона.

С первыми тремя видами линий мы уже знакомы.

Линиями наибольшего уклона (ЛНУ) плоскости называются прямые перпендикулярные линиям уровня этой плоскости.

Прямые в плоскости, перпендикулярные горизонталям этой плоскости называют часто линиями наибольшего ската (по этим линиям стекают с крыши дома капли дождя), они образуют наибольший угол с горизонтальной плоскостью.

Действительно, если провести в плоскости Б(рисунок 2-7) прямую АВ, перпендикулярную к горизонтали h этой плоскости и произвольную прямую АС, то нетрудно показать, что прямая АВ образует больший угол наклона с горизонтальной плоскостью Г, нежели прямая АС. Покажем, что >.

Рассмотрим два прямоугольных треугольника: АА*В и АА*С с общим катетом АА*. Здесь АВ меньше АС, т.к. АВ- перпендикуляр из точки А на прямую h, в то время как АС - наклонная к h линия. Поэтому если совместить поворотом АА*В с АА*С,то прямая АВ займет положение АВ* внутри АА*С и станет очевидно, что ABA*=>ACA*=

  Аналогично можно показать, что прямая плоскости, перпендикулярная к фронтали или профильной прямой данной плоскости, является соответственно прямой наибольшего уклона к фронтальной или профильной плоскости уровня.

Нетрудно видеть, что линейный угол между ЛНУ и ее проекцией А*В* является равным углу наклона плоскости Б к плоскости Г. Поэтому: измерение двугранного угла между плоскостью общего положения Б и плоскостью уровня сводится к измерению угла между соответствующей прямой наибольшего уклона плоскости Б и проекцией ЛНУ на выбранную плоскость уровня.

Пример 1. Провести в плоскости Б ( АВС) через точку В прямые наибольшего уклона U1 и U2 к горизонтальной и фронтальной плоскостям (рисунок 2-8). Сначала строим ЛНУ к горизонтальной плоскости. Для этого в заданной плоскости Б проведем горизонталь h- например А-1; На предыдущем рисунке 3-2 видно, что перпендикулярность к h сохраняется и на виде сверху (аналогично перпендикулярность к f сохраняется на виде спереди; пока без доказательства).

Учитывая сказанное, проводим ЛНУ U1 сначала на виде сверху, а затем (используя т.2) и на виде спереди. Выделив на линии наибольшего уклона к горизонтальной плоскости отрезок (например B-2), найдем угол его наклона к Г плоскости способом прямоугольного треугольника.

Аналогичным образом строим ЛНУ к Ф плоскости и находим угол наклона ее (а значит и плоскости) к Ф плоскости.

Начертательная геометрия, ее методы и положения применяются почти во всех областях науки и техники. В частности, вопросами применения начертательной геометрии в химии занимался еще Гаспар Монж, когда в содружестве с Бертле разрабатывал способ изготовления пороха во времена французской революции. В современной химии и металлографии графические методы отображения и анализа систем приобрели широкое распространение. Графическое задание позволяет наглядно представить состояние вещества и его свойства и дает возможность решения практических задач, особенно - по физико-химическому анализу. В настоящее время разработано большое количество графических способов решения всевозможных теоретических и практических задач, связанных с построением диаграмм "состава" и "состав-свойство".
Учебник Решение пространственных задач на комплексном чертеже