Курс лекций по физике Электромагнетизм

Проектирование электротехнических устройств
Курс лекций по электротехнике
Расчет электрических цепей постоянного тока
Баланс мощности в электрической цепи
Законы Кирхгофа в операторной форме
Соединение потребителей звездой
Входное сопротивление пассивного
четырехполюсника
Расчёт сложных цепей переменного тока 
символическим методом
Короткое замыкание и холостой ход линии
Расчет нелинейной электрической цепи
Магнитные цепи при постоянных токах
Трансформатор с ферромагнитным
сердечником
Расчет нелинейных цепей по мгновенным
значениям
Правила выполнения лабораторных работ
Частотная модуляция и детектирование
ЧМ-сигналов
Рассчитать электрическую линию однофазного
переменного тока
Курс лекций по теории электрических цепей
Амплитудно - временные параметры
Исследование сигналов с помощью
преобразований Лапласа
Корреляция и спектральные характеристики
случайных сигналов и помех.
Управление информационными параметрами
сигналов
Особенности анализа радиосигналов в
избирательных цепях
Частотные свойства усилителей
Генерирование колебаний в электрических
цепях
Графический метод анализа стационарного
режима
Анализ параметрических цепей
Баланс мощностей в параметрических цепях
Фильтрация сигналов на фоне помех
Импульсная характеристика согласованного
фильтра
Курс лекций по информатике
Концепция защищенной ВС
Обеспечение безопасности информации
в открытых сетях
Классификация межсетевых экранов
Способы заражения вирусом
Общая энергетика
Электрические и тепловые сети
Тепловые электростанции
Атомные электростанции
Турбины и генераторы
Водородная энергетика
Экологические проблемы
в теплоэнергетике
Образование загрязняющих веществ
Загрязнение атмосферного воздуха
Электромагнитное загрязнение
Сокращение выбросов парниковых
газов
Сточные воды теплоэнергообьектов
Расчет выбросов оксида азота
Начертательная геометрия
Построение видов на чертеже
Компьютерная графика
Инженерная графика
Детали машин и основы
конструирования
Практикум по компьютерной
графике
Материаловедение
Примеры курсовых расчетов
Физические свойства материалов
История искусства
Искусство Древнего Египта
Искусство Эгейского мира
Искусство Греции
Искусство Римской империи
Возрождение
Искусство итальянского барокко
Основные направления в искусстве
Абстрактное искусство
Супрематизм
Аналитическое искусство
Поп-арт
Видео-арт
Московский концептуализм
Социалистический реализм
Античное искусство 
Романское искусство
Барокко
Классицистический стиль
Готический стиль
Интерьеры готических соборов
Искусство  Итальянского Возрождения
Стиль модерн
Импрессионизм
Курс лекций по физике
Электростатика
Электромагнетизм
Молекулярная физика и термодинамика
Электрическое поле
Курс лекций по оптике
Курс лекций по математике
Криволинейный интергал первого рода
Поверхностный интеграл первого рода
Интегралы и их приложения
Интегрирование по частям
Правила дифференцирования
Предел и непрерывность функции одной
переменной
Предел функции в точке
Некоторые замечательные пределы
Непрерывность функции в точке
Понятие о комплексных числах
Дифференциальное исчисление функции
одной переменной.
Дифференцирование функций
Теорема Тейлора
Геометрический смысл теоремы Ролля
Исследование функций с помощью производной
Исследование функции на экстремум
Общая схема исследования функций
Числовые ряды
Сходимость рядов
Знакопеременные ряды
Функциональные ряды
Степенные ряды
Интегральное исчисление функции одной
переменной
Квадратный трехчлен
Основные методы интегрирования
Интегрирование рациональных функций.
Интеграл произведения синусов и косинусов
Определённый интеграл
Интегрирование по частям
Несобственные интегралы
Вычисление площадей плоских фигур
Функции нескольких переменных
Производная и дифференциал функции
нескольких переменных
Экстремум функции нескольких переменных
Производная по направлению
Кратные, поверхностные и криволинейные
интегралы
Формула Остроградского
Вычисление объемов тел
Предел и непрерывность функции нескольких
переменных
Линейная алгебра

Определители.( детерминанты).

  • Миноры
  • Элементы векторной алгебры
  • Векторное произведение векторов
  • Аналитическая геометрия
  • Кривые второго порядка
  • Парабола
  • Аналитическая геометрия в пространстве
  • Угол между прямыми в пространстве.
  • Цилиндрическая и сферическая системы
    координат
  • Предел функции при стремлении аргумента к
    бесконечности.
  • Правила вычисления неопределенных
    интегралов
  • Простейшие интегралы, содержащие
    квадратный трехчлен
  • Интегрирование некоторых
    тригонометрических функций
  • Сходимость несобственных интегралов
  • Преобразования несобственных интегралов
    от одного типа к другому
  • Установить абсолютную сходимость
    интеграла
  • Главные значения расходящихся
    несобственных интегралов
  • Исследовать на сходимость ряды
  • Дифференциальные уравнения
  • Найти неопределённый интеграл
  • Магнитное поле До начала 19-го века единственным источником магнитного поля, известным Человечеству, были постоянные магниты. Они применялись в виде магнитных стрелок компаса (древний Китай), священниками («плавающий гроб» Магомета в Мекке), были попытки применения магнитов для лечения болезней (растирали руду в порошок и беспощадно заставляли пить суспензию). Ни о какой физической ясности о природе явления, конечно, не было.

    Магнитное поле одиночного движущегося заряда Пространство-вакуум изотропно; если электрический заряд в нем неподвижен, то все направления оказываются равноправными. Поэтому и электрическое поле, создаваемое точечным зарядом, сферически симметрично.

    Магнитное поле кругового тока Рассмотрим поле, создаваемое током, текущим по тонкому проводу, имеющему форму окружности радиуса R (круговой ток). Определим магнитную индукцию в центре кругового тока (рис.21.8). Каждый элемент тока создает в центре индукцию, направленную вдоль положительной нормали к контуру. Поэтому векторное сложение dВ сводится к сложению их модулей.

    Циркуляция вектора В. Поле соленоида и тороида Возьмем контур, охватывающий прямой ток, и вычислим для него циркуляцию вектора В

    Сила Лоренца ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ В МАГНИТНОМ ПОЛЕ. Рассмотрим движение в вакууме заряженной частицы. Если в пространстве имеется магнитное поле, то на электрический заряд действует сила, величина которой может быть определена по формуле, предложенной Лоренцем:

    Рассмотрим теперь общий случай движения заряженной частицы в однородном магнитном поле, когда ее скорость v направлена под произвольным острым углом а к вектору индукции поля В

    Масс-спектрография и масс-спектрометрия Проводя опыты с пучками одновалентных ионов неона на установке, принципиальная схема которой приведена на рис 22.6 (сконструирована в 1919 году учеником Томсона Ф.Астоном), Томсон обнаружил на фотопластинке изображения ветвей двух разных парабол, соответствующих несколько отличным одно от другого значениям удельного заряда.

    Ускорители заряженных частиц Ядерная физика изучает взаимодействие частиц высоких энергий. Для их получения исторически первыми были электростатические ускорители, но при этом требуются ускоряющие напряжения ~ 1 MB, которые никакие конструкции не выдерживают: возникают поверхностные пробои, газовые разряды. Этого же результата можно добиться, если частицы многократно (циклически) пропускать через одну и ту же область ускоряющего электрического поля. Это обеспечивается их круговым движением в магнитном поле.

    Сила Ампера Исторически первой была открыта и описана не сила Лоренца, действующая со стороны магнитного поля на отдельные заряды, о величине которых в начале 19 века ничего не было известно, а сила, действующая на макроскопические токи. Представим себе проводник с током как некий канал с движущимися заряженными частицами. В металлах движется облако валентных электронов между узлами решетки, в жидкостях наблюдается встречное движение противоположно заряженных ионов, в газах – встречное движение ионов и электронов, в вакууме можно создать пучки электронов, протонов, a - частиц, ионов и т.п.

    Контур с током в магнитном поле Пусть прямоугольный плоский контур с током помещается в однородном магнитном поле. Если контур ориентирован так, что вектор В параллелен его плоскости (рис.23.3), то стороны, имеющие длину b, не будут испытывать действия сил, так как для них в формуле (23/3) sin a = 0.

    Рассмотрим влияние магнитного поля на движение электронов в атомах вещества, а точнее, рассмотрим, какие процессы произойдут в орбите движения электрона при наложении внешнего магнитного поля.

    Магнитные свойства вещества Определение в начале 19 века движения электрических зарядов в качестве источника магнитного поля и установление ядерно-электронного строения вещества в начале 20 века предопределило современные представления о невозможности индифферентной реакции на внешнее магнитное поле любых веществ в любом агрегатном состоянии - газообразном, жидком или твердом. Таким образом, все вещества в природе являются магнетиками разных типов.

    Магнитное поле в веществе. Вектор намагничивания Макроскопически реакция любого вещества на помещение его во внешнее магнитное поле сходна с поляризацией диэлектриков, помещенных в электрическое поле.

    Диамагнетики Диамагнетиками называются вещества, полные магнитные моменты атомов или молекул которых при отсутствии внешнего поля равны нулю, т.е. векторная сумма орбитальных и спиновых моментов всех электронов равна нулю:  

    Ферромагнетики Помимо уже рассмотренных двух классов веществ - диа- и парамагнетиков, называемых слабомагнитными веществами, существуют еще сильномагнитные вещества - ферромагнетики - вещества, обладающие спонтанной (самопроизвольной) намагниченностью, т.е. они намагничены и при отсутствии внешнего магнитного поля.

     Описательная (феноменологическая) теория ферромагнетизма была разработана П.Вейссом в 1900 - 1911 гг. Позднее Я.И. Френкелем и В.Гейзенбергом была создана последовательная количественная квантово - механическая теория.

    Магнитные свойства вещества  Определение в начале 19 века движения электрических зарядов в качестве источника магнитного поля и установление ядерно-электронного строения вещества в начале 20 века предопределило современные представления о невозможности индифферентной реакции на внешнее магнитное поле любых веществ в любом агрегатном состоянии - газообразном, жидком или твердом. Таким образом, все вещества в природе являются магнетиками разных типов.

    Гармонические колебания и их характеристики Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи.

    Электромагнитные колебания Квазистационарные токи Закон Ома и вытекающие из него правила Кирхгофа  были установлены для постоянного тока. Однако они остаются справедливыми и для мгновенных значений изменяющихся тока и напряжения, если только их изменения происходят не слишком быстро. Электромагнитные возмущения распространяются по цепи с огромной скоростью, равной скорости света с.

    Гармонический осциллятор. Единая теория колебаний при анализе математически идентичных физических систем использует обобщающее понятие гармонического осциллятора, не различающего в принципе колебательные процессы в электрическом колебательном контуре и в системах, совершающих механические колебания.

    Энергия свободных механических колебаний

    Квазиупругая сила является консервативной. Поэтому полная энергия гармонического колебания должна оставаться постоянной. В процессе колебаний, как мы выяснили выше, происходит превращение кинетической энергии в потенциальную и обратно, причем в моменты наибольшего отклонения из положения равновесия полная энергия Е состоит только из потенциальной энергии, которая достигает своего наибольшего значения Ерmax

    Свободные затухающие механические колебания пружинного маятника.

    Вынужденные механические колебания Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью какого-либо периодически действующего фактора Х(t), изменяющего по гармоническому закону

    Сложение колебаний (колебания в системах с несколькими степенями свободы) Рассмотренные в предыдущих параграфах закономерности колебательных движений являются простейшими в том смысле, что они характеризуют свойства изолированного колебания. Такие колебания происходят в системах с одной степенью свободы (рассматривается движение под действием сил, направленных вдоль единственной оси, например, Х).

    Сложение колебаний одинакового направления Возможны случаи, когда тело участвует одновременно в нескольких колебаниях, происходящих вдоль одного и того же направления. Если, например, подвесить шарик на пружине к потолку вагона, качающегося на рессорах, то движение шарика относительно поверхности Земли будет складываться из колебаний вагона относительно Земли и колебаний шарика относительно вагона.

    Механические волны Основные понятия и определения Рассмотрим теперь характеристики колебательных движений, происходящих в системах с достаточно большим, в принципе бесконечно большим числом частиц – в сплошных средах с идеально упругими связями между атомами и молекулами.

    Эффект Доплера Исследование волновых процессов показало, что частота колебаний не является инвариантной характеристикой. В частности, она изменяется при переходе из одной системы отсчета в другую, если она движется относительно первой. Изменение частоты колебаний вследствие движения источника или приемника волн называется эффектом Доплера.

    Стоячие волны Очень важный случай интерференции наблюдается при наложении двух встречных плоских волн с одинаковой амплитудой. Возникающий в результате колебательный процесс называется стоячей волной. Практически стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и бегущая ей навстречу отраженная, налагаясь друг на друга, дают стоячую волну.

    Уравнения Максвела в интегральной и дифференциальной форме В 60-65 годах 19 столетия Джеймс Клерк Максвелл, опираясь на идеи Фарадея об электрических и магнитных полях, разработал теорию единого электромагнитного поля. Уравнения, предложенные Максвеллом, составляют основу как электротехники и радиотехники, так и теорий любых электромагнитных явлений в любых средах (но без учета атомно-молекулярной структуры!).

    Ток смещения Прежде, чем рассмотреть следующее обобщение теории Максвелла, остановимся на понятии, введенном Максвеллом в электродинамику.

    Второе уравнение Максвела С учетом введенного понятия о токе смещения Максвелл обобщил теорему о циркуляции

    Электромагнитные волны Получение электромагнитных волн. Шкала электромагнитных волн Существование электромагнитных волн - переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью, вытекает из уравнений Максвелла. Уравнения Максвелла сформулированы в 1865 т. на основе обобщения эмпирических законов электрических и магнитных явлений. Решающую роль для утверждения максвелловской теории сыграли опыты Герца (1888), доказавшие, что электрические и магнитные поля действительно распространяются в виде волн, поведение которых полностью описывается уравнениями Максвелла.

    Дифференциальное уравнение электромагнитной волны Одним из важнейших следствий уравнений Максвелла  является существование электромагнитных волн. Запишем уравнения Максвелла в дифференциальной форме применительно к однородной и изотропной среде (m = const, e = const):

    Энергия электромагнитных волн. Вектор Умова – Пойнтинга Возможность обнаружения электромагнитных волн указывает на то, что они переносят энергию. Объемная плотность w энергии электромагнитной волны складывается из объемных плотностей wэл и wм электрического и магнитного полей

    Начертательная геометрия, инженерная графика, основы конструирования Компьютерная графика, физика