Электромагнетизм Курс лекций по оптике Интерференция света Дифракция света Квантовые явления Применение фотоэффекта Современная физика атомов и молекул Радиоактивное излучение и его виды

Характеристики теплового излучения

 Электромагнитные волны, испускаемые атомами, которые возбуждаются за счет теплового движения, представляют собой тепловое излучение. Тела, нагретые до достаточно высоких температур, светятся. Тепловое излучение, являясь самым распространенным в природе, совершается за счет энергии теплового движения атомов и молекул вещества (т. е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются как короткие (видимые и ультрафиолетовые) электромагнитные волны, так и длинноволновое излучение (инфракрасное), при низких — преимущественно длинные волны (инфракрасные).

Тепловое излучение — практически единственный вид излучения, который может быть равновесным. Предположим, что нагретое (излучающее) тело помещено в полость, ограниченную идеально отражающей оболочкой (рис.37.2). С течением времени, в результате непрерывного обмена энергией между телом и излучением, наступит равновесие, т. е. тело в единицу времени будет поглощать столько же энергии, сколько и излучать.

Рис. 37.2. К объяснению равновесного излучения.

Допустим, что равновесие между телом и излучением по какой-либо причине нарушено и тело излучает энергии больше, чем поглощает. Если в единицу времени тело больше излучает, чем поглощает (или наоборот), тo температура тела начнет понижаться (или повышаться). В результате будет ослабляться (или возрастать) количество излучаемой телом энергии, пока, наконец, не установится равновесие. Все другие виды излучения неравновесны.

Количественной характеристикой теплового излучения служит спектральная плотность энергетической светимости (излучательности) тела — мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины:

где , — энергия электромагнитного излучения, испускаемого за единицу времени (мощность излучения) с единицы площади поверхности тела в интервале частот от n до n + dn.

Единица спектральной плотности энергетической светимости (Rn,T) — джоуль на метр в квадрате (Дж/м2).

Записанную формулу можно представить в виде функции длины волны:

= Rn,T×dn = Rl,T×dl.

Так как c = l×n, то

 

где знак минус указывает на то, что с возрастанием одной из величин (n или l) другая величина убывает. Поэтому в дальнейшем знак минус будем опускать. Таким образом,

  (37.5)

С помощью формулы (37.5) можно перейти от Rn,T к Rl,T, и наоборот.

Зная спектральную плотность энергетической светимости, можно вычислить интегральную энергетическую светимость (интегральную излучательность) (ее называют просто энергетической светимостью тела), просуммировав по всем частотам:

 (37.6)

Важную роль в процессах поглощения и излучения энергии играет и рассмотренная уже способность тел поглощать падающее на них излучение, которая характеризуется спектральной поглощательной способностью, показывающей, какая доля энергии, приносимой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частотами от n до n + dn., поглощается телом. Спектральная поглощательная способность — величина безразмерная.

Спектральная поглощательная способность черного тела для всех частот и температур тождественно равна единице (аlº 1). Абсолютно черных тел в природе нет, однако такие тела, как сажа, платиновая чернь, черный бархат и некоторые другие, в определенном интервале частот по своим свойствам близки к ним.

 Идеальной моделью черного тела является замкнутая полость с небольшим отверстием О, внутренняя поверхность которой зачернена (рис.37.3). Луч света, попавший внутрь такой полости, испытывает многократные отражения от стенок, в результате чего интенсивность вышедшего излучения оказывается практически равной нулю. Опыт показывает, что при размере отверстия, меньшего 0,1 диаметра полости, падающее излучение всех частот полностью поглощается. Вследствие этого днем открытые окна домов со стороны улицы кажутся черными, хотя внутри комнат достаточно светло из-за отражения света от стен.

Рис. 37.3. Модель абсолютно черного тела.

Исследование теплового излучения сыграло важную роль в создании квантовой теории света, поэтому необходимо рассмотреть законы, которым оно подчиняется.

Закон Кирхгофа

Кирхгоф, опираясь на второй закон термодинамики и анализируя условия равновесного излучения в изолированной системе тел, установил количественную связь между спектральной плотностью энергетической светимости и спектральной поглощательной способностью тел. Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности есть величина постоянная, оно не зависит от природы тела и является для всех тел универсальной функцией частоты (длины волны) и температуры (закон Кирхгофа):

  (37.7)

Таким образом, универсальная функция Кирхгофа rl,T есть не что иное, как спектральная плотность энергетической светимости абсолютно черного тела. Следовательно, согласно закону Кирхгофа, для всех тел отношение спектральной плотности энергетической светимости к спектральной поглощательной способности равно спектральной плотности энергетической светимости черного тела при той же температуре.

Из закона Кирхгофа следует, что спектральная плотность энергетической светимости любого реального тела в любой области спектра всегда меньше спектральной плотности энергетической светимости черного тела (при тех же значениях Т и v), так как аl,Т < 1 и поэтому Rl,T<rl,T. Кроме того, из (37.7) вытекает, что если тело при данной температуре T не поглощает электромагнитные волны в интервале частот от v до v+dv, то оно их в этом интервале частот при температуре T и не излучает, так как при аl,Т =0 Rl,Т = 0.

Используя закон Кирхгофа, выражение для энергетической светимости тела (37.3) можно записать в виде

 

Для серого тела

  (37.8)

где

 

- энергетическая светимость абсолютно черного тела, зависящая только от температуры.

Задача анализа процессов в цепи сводится к задачи Коши, т.е. к решению системы интегро-дифференциальных уравнений с заданными начальных условиями Для линейной цепи, составленной из постоянных элементов, система уравнений является линейной с постоянными коэффициентами. При исследовании процессов свободных колебаний в цепях, а также исследовании вынужденных колебаний, решение системы уравнений удобно находить операторным методом, т.к. функции описывающие источники колебательного процесса - воздействия, а, следовательно, и функции, описывающие возникающие колебания - отклики, преобразуемы по Лапласу.
Квантовые усилители и генераторы