Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Электромагнетизм Курс лекций по оптике Интерференция света Дифракция света Квантовые явления Применение фотоэффекта Современная физика атомов и молекул Радиоактивное излучение и его виды

Квантовые явления

Свойства фотонов. Масса и импульс фотона. Давление света

 До сих пор при объяснении квантовых оптических явлений мы использовали только одну характеристику фотона - его энергию e = hn. Помимо энергии, фотон обладает также массой и импульсом (количеством движения).

Формула для массы фотона может быть непосредственно выведена из формулы Эйнштейна, выражающей взаимосвязь массы и энергии в теории относительности:

  (38.1)

Фотон - элементарная частица, которая всегда (в любой среде!) движется со скоростью света с и имеет массу покоя, равную нулю. Следовательно, масса фотона отличается от массы таких элементарных частиц, как электрон, протон и нейтрон, которые обладают отличной от нуля массой покоя и могут находиться в состоянии покоя.

Импульс фотона рg получим из связи импульса с энергией:

  (38.2)

Из приведенных рассуждений следует, что фотон, как и любая другая частица, характеризуется энергией, массой и импульсом. Выражения (38.1) и (38.2) связывают корпускулярные характеристики фотона — массу, импульс и энергию — с волновой характеристикой света — его частотой v.

Если фотоны обладают импульсом, то свет, падающий на тело, должен оказывать на него давление. Согласно квантовой теории, давление света на поверхность обусловлено тем, что каждый фотон при соударении с поверхностью передает ей свой импульс.

Рассчитаем с точки зрения квантовой теории световое давление, оказываемое на поверхность тела потоком монохроматического излучения (частота v), падающего перпендикулярно поверхности. Если в единицу времени на единицу площади поверхности тела падает N фотонов, то при коэффициенте отражения r света от поверхности тела rN фотонов отразится, а (1 - r) N — поглотится. Каждый поглощенный фотон передает поверхности импульс  а каждый отраженный —  (при отражении импульс фотона изменяется на - pg). Давление света на поверхность равно импульсу, который передают поверхности в 1с N фотонов:

Nhv =Ee есть энергия всех фотонов, падающих на единицу поверхности в единицу времени, т. е. энергетическая освещенность поверхности, a  — объемная плотность энергии излучения. Поэтому давление, производимое светом при нормальном падении на поверхность,

   (38.3)

Формула (38.3), выведенная на основе квантовых представлений, совпадает с выражением, получаемым из электромагнитной (волновой) теории Максвелла. Таким образом, давление света одинаково успешно объясняется и волновой, и квантовой теорией. Как уже говорилось, экспериментальное доказательство существования светового давления на твердые тела и газы дано в опытах П. Н. Лебедева, сыгравших в свое время большую роль в утверждении теории Максвелла.

Рис.38.1. Схема опыта П.Н.Лебедева.

Лебедев использовал легкий подвес на тонкой нити, по краям которого прикреплены легкие крылышки, одни из которых зачернены, а поверхности других зеркальные (рис. 38.1). Использовалась подвижная система зеркал, позволяющая направлять свет на обе поверхности крылышек, подвес помещался в откачанный баллон, крылышки подбирались очень тонкими (чтобы температура обеих поверхностей была одинакова). Световое давление на крылышки определялось по углу закручивания нити подвеса и совпадало с теоретически рассчитанным. В частности оказалось, что давление света на зеркальную поверхность вдвое больше, чем на зачерненную.

Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта

Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта - явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории. Различают фотоэффект внешний, внутренний и вентильный.

Внешним фотоэлектрическим эффектом (фотоэффектом) называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация). Фотоэффект обнаружен (1887 г.) Г. Герцем, наблюдавшим усиление процесса разряда при облучении искрового промежутка ультрафиолетовым излучением.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А. Г. Столетовым в 1888-1890 гг. (об электронах тогда ничего известно не было). Принципиальная схема для исследования фотоэффекта приведена на рис.38.2.

Рис.38.2. Схема опытов А.Г.Столетова.

Два электрода (катод D из исследуемого металла (цинка) и анод C — в схеме Столетова применялась металлическая медная сетка) представляют собой плоский конденсатор. При освещении отрицательно заряженной пластины D светом от источника S в цепи возникал ток, фиксируемый гальванометром G и называемый фототоком. Освещение положительно заряженной обкладки С конденсатора не приводило к возникновению тока. Тем самым было экспериментально доказано, что под действием света металл теряет именно отрицательно заряженные частицы.

Облучая катод светом различных длин волн, Столетов установил следующие закономерности, не утратившие своего значения до нашего времени:

наиболее эффективное действие оказывает ультрафиолетовое излучение;

под действием света вещество теряет только отрицательные заряды;

3) сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

Дж. Дж. Томсон в 1898 г. измерил удельный заряд испускаемых под действием света частиц (по отклонению в электрическом и магнитном полях). Эти измерения показали, что под действием света вырываются электроны.

Современная схема установки для изучения законов фотоэффекта приведена на рис. 38.3.

Рис.38.3. Современная схема установки для изучения законов внешнего фотоэффекта.

Два электрода (катод К из исследуемого металла и анод А) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое окошко D), измеряется включенным в цепь гальванометром или миллиамперметром.

Внутренний фотоэффект — это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению ЭДС.

Вентильный фотоэффект, являющийся разновидностью внутреннего фотоэффекта, — возникновение ЭДС (фотоЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает, таким образом, пути для прямого преобразования солнечной энергии в электрическую.

На рис.38.3 приведена экспериментальная установка для исследования вольт-амперной характеристики фотоэффекта — зависимости фототока I, образуемого потоком электронов, испускаемых катодом под действием света, от напряжения U между электродами. Такая зависимость, соответствующая двум различным освещенностям Еe катода (частота света в обоих случаях одинакова), приведена на рис. 38.4.

Рис.38.4. Вольт-амперные характеристики

Фотоэффекта.

По мере увеличения U фототок постепенно возрастает, т. е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями. Максимальное значение тока Iнас - фототок насыщения - определяется таким значением U, при котором все электроны, испускаемые катодом, достигают анода:

 Iнас = en,

где п — число электронов, испускаемых катодом в 1 с.

Из вольт-амперной характеристики следует, что при U = 0 фототок не исчезает. Следовательно, электроны, выбитые светом из катода, обладают некоторой начальной скоростью v, а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля. Для того чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение Uo. При U = Uo ни один из электронов, даже обладающий при вылете из катода максимальной скоростью vmax не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

   (38.4)

т. е., измерив задерживающее напряжение Uo, можно определить максимальные значения скорости и кинетической энергии фотоэлектронов.

Задача анализа процессов в цепи сводится к задачи Коши, т.е. к решению системы интегро-дифференциальных уравнений с заданными начальных условиями Для линейной цепи, составленной из постоянных элементов, система уравнений является линейной с постоянными коэффициентами. При исследовании процессов свободных колебаний в цепях, а также исследовании вынужденных колебаний, решение системы уравнений удобно находить операторным методом, т.к. функции описывающие источники колебательного процесса - воздействия, а, следовательно, и функции, описывающие возникающие колебания - отклики, преобразуемы по Лапласу.
Квантовые усилители и генераторы