Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Электромагнетизм Курс лекций по оптике Интерференция света Дифракция света Квантовые явления Применение фотоэффекта Современная физика атомов и молекул Радиоактивное излучение и его виды

Спектр. Квантовые числа п, l и ml позволяют более полно описать спектр испускания (поглощения) атома водорода, полученный в теории Бора (см. рис. 40.2).

В квантовой механике вводятся правила отбора, ограничивающие число возможных переходов электронов в атоме, связанных с испусканием и поглощением света. Теоретически доказано и экспериментально подтверждено, что для дипольного излучения электрона, движущегося в центрально-симметричном поле ядра, могут осуществляться только такие переходы, для которых: 1) изменение орбитального квантового числа Dl удовлетворяет условию

Dl = ±1; (42.9)

2) изменение магнитного квантового числа ml удовлетворяет условию

 D ml = 0, ±1.

В оптических спектрах указанные правила отбора в основном выполняются. Однако в принципе могут наблюдаться и слабые «запрещенные» линии, например возникающие при переходах с Dl=2. Появление этих линий объясняется тем, что строгая теория, запрещая дипольные переходы, разрешает переходы, соответствующие излучению более сложных систем зарядов, например квадруполей. Вероятность же квадрупольных переходов (переходы с Dl = 2) во много раз меньше вероятности дипольных переходов, поэтому «запрещенные» линии и являются слабыми.

Учитывая число возможных состояний, соответствующих данному n, и правило отбора (42.9), рассмотрим спектральные линии атома водорода (рис. 42.2): серии Лаймана соответствуют переходы


np®1s (n =2,3,...);

серии Бальмера —

np®2s, ns®2p, nd®2p (n =3,4,...)

и т. д.

 Рис. 42.2. Спектр атома водорода.

Переход, электрона из основного состояния в возбужденное обусловлен увеличением энергии атома и может происходить только при сообщении атому энергии извне, например, за счет поглощения атомом фотона. Tax как поглощающий атом находится обычно в основном состоянии, то спектр атома водорода должен состоять из линий, соответствующих переходам 1s® np (n = 2, 3, ...), что находится в полном согласии с опытом.

1s-Состояние электрона в атоме водорода

1s-Состояние электрона в атоме водорода является сферически-симметричным, т.е. не зависит от углов q и j. Волновая функция y электрона в этом состоянии определяется только расстоянием r электрона от ядра, т. е. y = y100(r), где цифры в индексе соответственно указывают, что n =1, l = 0 и ml = 0. Уравнению Шредингера для

1s-состояния электрона в атоме водорода удовлетворяет функция вида

  (42.10)

где, как можно показать,  — величина, совпадающая с первым боровским радиусом а  для атома водорода, С — некоторая постоянная, определяемая из условия нормировки вероятностей.

Благодаря сферической симметрии y-функции вероятность обнаружения электрона на расстоянии r одинакова по всем направлениям. Поэтому элемент объема dV, отвечающий одинаковой плотности вероятности, обычно представляют в виде объема сферического слоя радиусом r и толщиной dr: dV=4pг2dr. Тогда, согласно условию нормировки вероятностей с учетом (42.10),

После интегрирования получим

  (42.11)

Подставив выражение (42.11) в формулу (42.10), определим нормированную волновую функцию, отвечающую 1s-состоянию электрона в атоме водорода:

  (42.12)

Вероятность обнаружить электрон в элементе объема равна

Dw= |y|2 dV = y|2 4pr2 dr.

Подставив в эту формулу волновую функцию (42.12), получим

 

 Рис. 42.3. Графические решения уравнения Шредингера о наиболее вероятных расстояниях электрона до ядра атома водорода.

Вычислим те расстояния rmax от ядра, на которых электрон может быть обнаружен с наибольшей вероятностью. Исследуя выражение dw/dr на максимум, получим, что rmax =а. Следовательно, электрон может быть обнаружен с наибольшей вероятностью на расстояниях, равных боровскому радиусу, т. е. имеется равная и наибольшая вероятность обнаружения электрона во всех точках, расположенных на сферах радиуса а с центром в ядре атома. Казалось бы, квантово-механический расчет дает полное согласие с теорией Бора. Однако, согласно квантовой механике, плотность вероятности лишь при r=а достигает максимума, оставаясь отличной от нуля во всем пространстве.

На рис. 42.3 приведены плотности вероятности для случаев: 1) п = 1, l = 0;

2) п = 2, l = 1 и 3) п = 3, l = 2. За единицу масштаба для оси r принят радиус первой боровской орбиты a. На графиках отмечены радиусы соответствующих боровских орбит. Как видно из рисунка, эти радиусы совпадают с наиболее вероятными расстояниями электрона от ядра. Отметим, что ненулевой является и вероятность обнаружения электрона в точках пространства, отличающихся радиусом от боровских орбит. Но квантовая механика свидетельствует: в основном состоянии атома водорода наиболее вероятным расстоянием от электрона до ядра является расстояние, равное боровскому радиусу. В этом заключается квантово-механический смысл боровского радиуса.

 

 

 

Задача анализа процессов в цепи сводится к задачи Коши, т.е. к решению системы интегро-дифференциальных уравнений с заданными начальных условиями Для линейной цепи, составленной из постоянных элементов, система уравнений является линейной с постоянными коэффициентами. При исследовании процессов свободных колебаний в цепях, а также исследовании вынужденных колебаний, решение системы уравнений удобно находить операторным методом, т.к. функции описывающие источники колебательного процесса - воздействия, а, следовательно, и функции, описывающие возникающие колебания - отклики, преобразуемы по Лапласу.
Квантовые усилители и генераторы