Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Электромагнетизм Курс лекций по оптике Интерференция света Дифракция света Квантовые явления Применение фотоэффекта Современная физика атомов и молекул Радиоактивное излучение и его виды

Квантовая статистика. Фазовое пространство. Функция распределения

  Квантовая статистика - раздел статистической физики, исследующий системы, которые состоят из огромного числа частиц, подчиняющихся законам квантовой механики.

В отличие от исходных положений классической статистической физики, в которой тождественные частицы различимы (частицу можно отличить от всех таких же частиц), квантовая статистика основывается на принципе неразличимости тождественных частиц. При этом оказывается, что коллективы частиц с целым и полуцелым спинами подчиняются разным статистикам.

Пусть система состоит из N частиц. Введем в рассмотрение многомерное пространство всех координат и импульсов частиц системы. Тогда состояние системы определяется заданием 6N переменных, так как состояние каждой частицы определяется тройкой координат х, у, z и тройкой соответствующих проекций импульса рх, рy, рz. Соответственно число «взаимно перпендикулярных» координатных осей данного пространства равно 6N. Это 6N-мерное пространство называется фазовым пространством. (В таком пространстве делал вывод своего распределения молекул по скоростям Д. Максвелл). Каждому микросостоянию системы отвечает точка в 6N-мерном фазовом пространстве, так как задание точки фазового пространства означает задание координат и импульсов всех частиц системы. Разобьем фазовое пространство на малые 6N-мерные элементарные ячейки объемом dqdp=dq1 dq2...dq3N dp1 dp2...dp3N где q — совокупность координат всех частиц, р — совокупность проекций их импульсов. Корпускулярно-волновой дуализм свойств вещества и соотношение неопределенностей Гейзенберга приводят к выводу, что объем элементарной ячейки (он называется фазовым объемом) не может быть меньше чем h3 (h - постоянная Планка).

Вероятность dW данного состояния системы можно представить с помощью функции распределения f(q, р):

dW=f(q,p)dqdp.  (43.1)

Здесь dW— вероятность того, что точка фазового пространства попадет в элемент фазового объема dqdp, расположенного вблизи данной точки q, р. Иными словами, dW представляет собой вероятность того, что система находится в состоянии, в котором ее координаты и импульсы заключены в интервале q, q+dq и р, p+dp.

Согласно формуле (43.1), функция распределения есть не что иное, как плотность вероятности определенного состояния системы. Поэтому она должна быть нормирована на единицу:

где интегрирование производится по всему фазовому пространству.

Зная функцию распределения f(q,p), можно решить основную задачу квантовой статистики - определить средние значения величин, характеризующих рассматриваемую систему. Среднее значение любой функции

 (43.2)

Если иметь дело не с координатами и импульсами, а с энергией, которая квантуется, то состояние системы характеризуется не непрерывной, а дискретной функцией распределения.

Явное выражение функции распределения в самом общем виде получил американский физик Д. Гиббс (1839—1903). Оно называется каноническим распределением Гиббса. В квантовой статистике каноническое распределение Гиббса имеет вид

 (43.3)

где A — постоянная, определяемая из условия нормировки к единице, п — совокупность всех квантовых чисел, характеризующих данное состояние. Подчеркнем, что f(En) есть именно вероятность данного состояния, а не вероятность того, что система имеет определенное значение энергии Еn так как данной энергии может соответствовать не одно, а несколько различных состояний (может иметь место вырождение).

Понятие о квантовой статистике Бозе - Эйнштейна и Ферми - Дирака

Одним из важнейших «объектов» изучения квантовой статистики, как и классической, является идеальный газ. Это связано с тем, что во многих случаях реальную систему можно в хорошем приближении считать идеальным газом. Состояние системы невзаимодействующих частиц задается с помощью так называемых чисел заполнения Ni — чисел, указывающих степень заполнения квантового состояния (характеризуется данным набором i квантовых чисел) частицами системы, состоящей из многих тождественных частиц. Для систем частиц, образованных бозонами — частицами с нулевым или целым спином, числа заполнения могут принимать любые целые значения: 0, 1, 2, ... Для систем частиц, образованных фермионами - частицами с полуцелым спином, числа заполнения могут принимать лишь два значения: 0 для свободных состояний и 1 для занятых. Сумма всех чисел заполнения должна быть равна числу частиц системы. Квантовая статистика позволяет подсчитать среднее число частиц в данном квантовом состоянии, т. е. определить средние числа заполнения <Ni>.

Идеальный газ из бозонов — бозе - газ — описывается квантовой статистикой Бозе — Эйнштейна (Шатьендранат Бозе – Индия). Распределение бозонов по энергиям вытекает из так называемого большого канонического распределения Гиббса (с переменным числом частиц) при условии, что число тождественных бозонов в данном квантовом состоянии может быть любым:

 (43.4)

Это распределение называется распределением Бозе — Эйнштейна. Здесь <Ni> — среднее число бозонов в квантовом состоянии с энергией Еi, k — постоянная Больцмана, Т—термодинамическая температура, m - химический потенциал; m не зависит от энергии, а определяется только температурой и плотностью числа частиц. Химический потенциал находится обычно из условия, что сумма всех <Ni> равна полному числу частиц в системе. Здесь m£0, так как иначе среднее число частиц в данном квантовом состоянии отрицательно, что не имеет физического смысла. Он определяет изменение внутренней энергии системы при добавлении к ней одной частицы при условии, что все остальные величины, от которых зависит внутренняя энергия (энтропия, объем), фиксированы.

Идеальный газ из фермионов — ферми-газ — описывается квантовой статистикой Ферми — Дирака. Распределение фермионов по энергиям имеет вид

 (43.5)

где <Ni> — среднее число фермионов в квантовом состоянии с энергией Еi, m — химический потенциал. В отличие от (43.4) m может иметь положительное значение (это не приводит к отрицательным значениям чисел <Ni>. Это распределение называется распределением Ферми — Дирака.

Если , то распределения Бозе — Эйнштейна (43.4) и Ферми — Дирака (43.5) переходят в классическое распределение Максвелла— Больцмана:

  (43.6)

Таким образом, при высоких температурах оба «квантовых» газа ведут себя подобно классическому газу.

Система частиц называется вырожденной, если ее свойства существенным образом отличаются от свойств систем, подчиняющихся классической статистике. Поведение как бозе-газа, так и ферми-газа отличается от классического газа, они являются вырожденными газами. Вырождение газов становится существенным при весьма низких температурах и больших плотностях. Параметром вырождения называется величина А. При А<<1, т. е. при малой степени вырождения, распределения Бозе — Эйнштейна (43.4) и Ферми — Дирака (43.5) переходят в классическое распределение Максвелла — Больцмана (43.6).

Температурой вырождения Т0 называется температура, ниже которой отчетливо проявляются квантовые свойства идеального газа, обусловленные тождественностью частиц, т. е. Т0 — температура, при которой вырождение становится существенным. Если Т>>Т0, то поведение системы частиц (газа) описывается классическими законами.

Вырожденный электронный газ в металлах

Распределение электронов по различным квантовым состояниям подчиняется принципу Паули, согласно которому в одном состоянии не может быть двух одинаковых (с одинаковым набором четырех квантовых чисел) электронов, они должны отличаться какой-то характеристикой, например направлением спина. Следовательно, по квантовой теории, электроны в металле не могут располагаться на самом низшем энергетическом уровне даже при 0 К. Согласно принципу Паули, электроны вынуждены взбираться вверх «по энергетической лестнице».

Электроны проводимости в металле можно рассматривать как идеальный газ, подчиняющийся распределению Ферми — Дирака (43.5). Если mo — химический потенциал электронного газа при T = 0 К, то, согласно (43.5), среднее число  электронов в квантовом состоянии с энергией Е равно

 (43.7)

Для фермионов (электроны являются фермионами) среднее число частиц в квантовом состоянии и вероятность заселенности квантового состояния совпадают, так как квантовое состояние либо может быть не заселено, либо в нем будет находиться одна частица. Это означает, что для фермионов , где f(E) — функция распределения электронов по состояниям.

Из (43.7) следует, что при Т=0 К функция распределения , если Е<mо и , если Е>mo. График этой функции приведен на рис. 43, 1,а. В области

энергий от 0 до mo функция . При E = mo она скачкообразно изменяется до нуля. Это означает, что при N = 0 К все нижние квантовые состояния, вплоть до состояния с энергией Е=mo заполнены электронами, а все состояния с энергией, большей mo свободны.

Рис.43.1. Графики функции распределения Ферми-Дирака при различных температурах.

Следовательно, mo есть не что иное, как максимальная кинетическая энергия, которую могут иметь электроны проводимости в металле при 0 К. Эта максимальная кинетическая энергия называется энергией Ферми и обозначается ЕF (ЕF =mo). Поэтому распределение Ферми - Дирака обычно записывается в виде

  (43.8)

Наивысший энергетический уровень, занятый электронами, называется уровнем Ферми. Уровню Ферми соответствует энергия Ферми ЕF, которую имеют электроны на этом уровне. Уровень Ферми, очевидно, будет тем выше, чем больше плотность электронного газа. Работу выхода электрона из металла нужно отсчитывать не от дна «потенциальной ямы», как это делалось в классической теории, а от уровня Ферми, т. е. от верхнего из занятых электронами энергетических уровней.

Для металлов при не слишком высоких температурах выполняется неравенство kT<<EF. Это означает, что электронный газ в металлах практически всегда находится в состоянии сильного вырождения. Температура Т0 вырождения находится из условия kT= EF. Она определяет границу, выше которой квантовые эффекты перестают быть существенными. Соответствующие расчеты показывают, что для электронов в металле T0 » 104 К, т. е. для всех температур, при которых металл может существовать в твердом состоянии, электронный газ в металле вырожден.

При температурах, отличных от 0 К, функция распределения Ферми — Дирака (43.8) плавно изменяется от 1 до 0 в узкой области (порядка kT) в окрестности ЕF (рис. 43.1,б). (Здесь же для сравнения пунктиром приведена функция распределения при T=0 К.) Это объясняется тем, что при T>0 небольшое число электронов с энергией, близкой к EF, возбуждается вследствие теплового движения и их энергия становится больше EF. Вблизи границы Ферми при Е<ЕF заполнение электронами меньше единицы, а при Е>ЕF - больше нуля. В тепловом движении участвует лишь небольшое число электронов, например при комнатной температуре Т » 300 К и температуре вырожде-ния To=3×104 К, — это 10 -5 от общего числа электронов.

Если (E—EF)>>kT («хвост» функции распределения), то единицей в знаменателе (43.8) можно пренебречь по сравнению с экспонентой и тогда распределение Ферми — Дирака переходит в распределение Максвелла — Больцмана. Таким образом, при (E—EF)>>kT, т. е. при больших значениях энергии, к электронам в металле применима классическая статистика, в то же время, когда (E—EF)<<kT, к ним применима только квантовая статистика Ферми — Дирака.

Электрические цепи, для которых волновой характер процесса представляет основу используемых свойств цепи, а замена распределенных элементов сосредоточенными приводит к утрате этих основных свойств цепи, называют цепями с распределенными элементами. Токи и напряжения в таких цепях являются функциями координат сечения наблюдения цепи и времени t. При составлении систем уравнений с распределенными элементами возникают трудности: I) не выполняются законы Кирхгофа; 2) очень сложно произвести выбор реальной модели цепи с распределенными элементами; 3) напряжения и токи зависят не только от времени, но и от пространственных координат.
Квантовые усилители и генераторы