Электромагнетизм Курс лекций по оптике Интерференция света Дифракция света Квантовые явления Применение фотоэффекта Современная физика атомов и молекул Радиоактивное излучение и его виды

МЕТОДЫ НАБЛЮДЕНИЯ В ЯДЕРНОЙ ФИЗИКЕ.

ЯДЕРНЫЕ РЕАКЦИИ

Методы наблюдения и регистрации радиоактивных излучений и частиц

Практически все методы наблюдения и регистрации радиоактивных излучений (a,b,g) и частиц основаны на их способности производить ионизацию и возбуждение атомов среды. Заряженные частицы вызывают эти процессы непосредственно, а g-кванты и нейтроны обнаруживаются по ионизации, вызываемой возникающими в результате их взаимодействия с электронами и ядрами атомов среды быстрыми заряженными частицами. Вторичные эффекты, сопровождающие рассмотренные процессы, такие, как вспышка света, электрический ток, потемнение фотопластинки, позволяют регистрировать пролетающие частицы, считать их, отличать друг от друга и измерять их энергию.

Приборы, применяемые для регистрации радиоактивных излучений и частиц, делятся на две группы:

1) приборы, позволяющие регистрировать прохождение частицы через определенный участок пространства и в некоторых случаях определять ее характеристики, например энергию (сцинтилляционные счетчик, черенковский счетчик, импульсная ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик);

2) приборы, позволяющие наблюдать, регистрировать (например, фотографировать), следы (треки) частиц в веществе (камера Вильсона, диффузионная камера, пузырьковая камера, ядерные фотоэмульсии).

1. Сцитилляционный счетчик. Наблюдение сцинтилляций — вспышек света при попадании быстрых частиц на флуоресцирующий экран - первый метод, позволивший Уильяму Круксу и Эрнсту Резерфорду на заре ядерной физики (1903) визуально регистрировать a-частицы. Сцитилляционный счетчик - детектор ядерных частиц, основными элементами которого являются сцинтиллятор (кристаллофосфор) и фотоэлектронный умножитель, позволяющий преобразовывать слабые световые вспышки в электрические импульсы, регистрируемые электронной аппаратурой. Обычно в качестве сцинтилляторов используют кристаллы некоторых неорганических (ZnS для ос-частиц; NaI-Tl, CsI-Tl — для b - частиц и g-квантов) или органических (антрацен, пластмассы — для g-квантов) веществ.

Сцинтилляционные счетчики обладают высоким разрешением по времени (10 -10 —10-5 с), определяемым родом регистрируемых частиц, сцинтиллятором и разрешающим временем используемой электронной аппаратуры (оно доведено сейчас до 10-8 – 10-10 с). Для этого типа счетчиков эффективность регистрации — отношение числа зарегистрированных частиц к полному числу частиц, пролетевших в счетчике, примерно 100% для заряженных частиц и 30% для g-квантов. Так как для многих сцинтилляторов (NaI-Tl, CsI-Tl, антрацен, стильбен) интенсивность световой вспышки в широком интервале энергий пропорциональна энергии первичной частицы, то счетчики на данных сцинтилляторах применяются для измерения энергии регистрируемых частиц.

2. Черенковский счетчик. Назначение черенковских счетчиков — это измерение энергии частиц, движущихся в веществе со скоростью, превышающей фазовую скорость света в данной среде, и разделение этих частиц по массам. Зная угол испускания излучения, можно определить скорость частицы, что при известной массе частицы равносильно определению ее энергии. С другой стороны, если масса частицы не известна, то она может быть определена по независимому измерению энергии частицы. Кроме того, при наличии двух пучков частиц с разными скоростями будут различными и углы испускания излучений, по которым можно искомые частицы определить. Для черенковских счетчиков разрешение по скоростям (иными словами, по энергиям) составляет 10 –3 – 10 -5. Это позволяет отделять элементарные частицы друг от друга при энергиях порядка 1 ГэВ, когда углы испускания излучения различаются очень мало. Время разрешения счетчиков достигает 10 -9 с. Счетчики Черенкова устанавливаются на космических кораблях для исследования космического излучения.

3. Импульсная ионизационная камера — это детектор частиц, действие которого основано на способности заряженных частиц вызывать ионизацию газа. Ионизационная камера представляет собой заполненный газом электрический конденсатор, к электродам которого подается постоянное напряжение. Регистрируемая частица, попадая в пространство между электродами, ионизует газ. Напряжение подбирается так, чтобы все образовавшиеся ионы, с одной стороны, доходили до электродов, не успев рекомбинировать, а с другой — не разгонялись настолько сильно, чтобы производить вторичную ионизацию. Следовательно, в ионизационной камере на ее электродах непосредственно собираются ионы, возникшие под действием заряженных частиц. Ионизационные камеры бывают двух типов: интегрирующие (в них измеряется суммарный ионизационный ток) и импульсные, являющиеся, по существу, счетчиками (в них регистрируется прохождение одиночной частицы и измеряется ее энергия, правда, с довольно низкой точностью, обусловленной малостью выходного импульса).

4. Газоразрядный счетчик. Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра (катод) с тонкой проволокой (анод), натянутой по его оси. Хотя газоразрядные счетчики по конструкции похожи на ионизационную камеру, однако в них основную роль играет вторичная ионизация, обусловленная столкновениями первичных ионов с атомами и молекулами газа и стенок. Можно говорить о двух типах газоразрядных счетчиков: пропорциональных (в них газовый разряд несамостоятельный, т. е. гаснет при прекращении действия внешнего ионизатора) и счетчик Гейгера — Мюллера (в них разряд самостоятельный, т. е. поддерживается после прекращения действия внешнего ионизатора).

В пропорциональных счетчиках рабочее напряжение выбирается так, чтобы они работали в области вольтамперной характеристики, соответствующей несамостоятельному разряду, в которой выходной импульс пропорционален первичной ионизации, т. е. энергии влетевшей в счетчик частицы. Поэтому они не только регистрируют частицу, но и измеряют ее энергию. В пропорциональных счетчиках импульсы, вызываемые отдельными частицами, усиливаются в 103 —104 раз (иногда и в 106 раз).

Счетчик Гейгера — Мюллера по конструкции и принципу действия существенно не отличается от пропорционального счетчика, но работает в области вольтамперной характеристики, соответствующей самостоятельному разряду, когда выходной импульс не зависит от первичной ионизации. Счетчики Гейгера — Мюллера регистрируют частицу без измерения ее энергии. Коэффициент усиления этих счетчиков составляет 108. Для регистрации раздельных импульсов возникший разряд следует гасить. Для этого, например, последовательно с нитью включается такое сопротивление, чтобы возникший в счетчике разряд вызывал на сопротивлении падение напряжения, достаточное для прерывания разряда. Временнóе разрешение счетчиков Гейгера—Мюллера составляет 10 –3 – 10 -7 с. Для газоразрядных счетчиков эффективность регистрации равна примерно 100% для заряженных частиц и примерно 5% для 7-квантов.

5. Полупроводниковый счетчик — это детектор частиц, основным элементом которого является полупроводниковый диод. Время разрешения составляет примерно 10 -9 с. Полупроводниковые счетчики обладают высокой надежностью, могут работать в магнитных полях. Малая толщина рабочей области (порядка сотни микрометров) полупроводниковых счетчиков не позволяет применять их для измерения высокоэнергетических частиц.

6. Камера Вильсона (1912) — это старейший и на протяжении многих десятилетий (вплоть до 50—60-х годов) единственный тип трекового детектора. Выполняется обычно в виде стеклянного цилиндра с плотно прилегающим поршнем. Цилиндр наполняется нейтральным газом (обычно гелием или аргоном), насыщенным парами воды или спирта. При резком, т. е. адиабатическом, расширении газа пар становится пересыщенным и на траекториях частиц, пролетевших через камеру, образуются треки из тумана. Образовавшиеся треки для воспроизводства их пространственного расположения фотографируются стереоскопически, т. е. под разными углами. По характеру и геометрии треков можно судить о типе прошедших через камеру частиц (например, a-частица оставляет сплошной жирный след, b-частица—тонкий), об энергии частиц (по величине пробега), о плотности ионизации (по количеству капель на единицу длины трека), о количестве участвующих в реакции частиц.

Российский ученый Д. В. Скобельцын (1892—1990) значительно расширил возможности камеры Вильсона, поместив ее в сильное магнитное поле (1927). По искривлению траектории заряженных частиц в магнитном поле, т. е. по кривизне трека, можно судить о знаке заряда. А если известен тип частицы (ее заряд и масса), то по радиусу кривизны трека можно определить энергию и массу частицы даже в том случае, если весь трек в камере не умещается (для реакций при высоких энергиях вплоть до сотен мегаэлектронвольт). Недостаток камеры Вильсона — ее малое рабочее время, составляющее примерно 1% от времени, затрачиваемого для подготовки камеры к последующему расширению (выравнивание температуры и давления, рассасывание остатков треков, насыщение паров), а также трудоемкость обработки результатов.

7. Диффузионная камера (1936) — это разновидность камеры Вильсона. В ней рабочим веществом также является пересыщенный пар, но состояние пересыщения создается диффузией паров спирта от нагретой (до 10°С) крышки ко дну, охлаждаемому (до - 60°С) твердой углекислотой. Вблизи дна возникает слой пересыщенного пара толщиной примерно 5 см, в котором проходящие заряженные частицы создают треки. В отличие от вильсоновской, диффузионная камера работает непрерывно. Кроме того, из-за отсутствия поршня в ней могут создаваться давления до 4 МПа, что значительно увеличивает ее эффективный объем.

8. Пузырьковая камера (1952; американский физик Д. Глезер (р. 1926)). В пузырьковой камере рабочим веществом является перегретая (находящаяся под давлением) прозрачная жидкость (жидкие водород, пропан, ксенон). Запускается камера, так же как и камера Вильсона, резким сбросом давления, переводящим жидкость в неустойчивое перегретое состояние. Пролетающая в это время через камеру заряженная частица вызывает резкое вскипание жидкости, и траектория частицы оказывается обозначенной цепочкой пузырьков пара - образуется трек, который, как и в камере Вильсона, фотографируется. Пузырьковая камера работает циклами. Размеры пузырьковых камер примерно такие же, как камеры Вильсона (от десятков сантиметров до 2 м), но их эффективный объем на 2—3 порядка больше, так как жидкости гораздо плотнее газов. Это позволяет использовать пузырьковые камеры для исследования длинных цепей рождений и распадов частиц высоких энергий.

9. Ядерные фотоэмульсии (1927; российский физик Л. В. Мысовский (1888—1939)) — это простейший трековый детектор заряженные частиц. Прохождение заряженной частицы в эмульсии вызывает ионизацию, приводящую к образованию центров скрытого изображения. После проявления следы заряженных частиц обнаруживаются в виде цепочки зерен металлического серебра. Так как эмульсия — среда более плотная, чем газ или жидкость, используемые в вильсоновской и пузырьковой камерах, то при прочих равных условиях длина трека в эмульсии более короткая. Так, трек длиной 0,05 см в эмульсии эквивалентен треку в 1 м в камере Вильсона. Поэтому фотоэмульсии применяются для изучения реакций, вызываемых частицами в ускорителях сверхвысоких энергий и в космических лучах. В практике исследований высокоэнергетических частиц используются также так называемые стопы — большое число маркированных фотоэмульсионных пластинок, помещаемых на пути частиц и после проявления промеряемых под микроскопом.

Большое значение начинают играть сравнительно новые (1957) приборы - искровые камеры, использующие преимущества счетчиков (быстрота регистрации) и трековых детекторов (полнота информации о треках). Говоря образно, искровая камера - это набор большого числа очень мелких счетчиков. Поэтому она близка к счетчикам, так как информация в ней выдается немедленно, без последующей обработки, и в то же время обладает свойствами трекового детектора, так как по действию многих счетчиков можно установить треки частиц.

В настоящее время методы наблюдения и регистрации заряженных частиц и излучений настолько разнообразны, что их полное описание выходит за рамки курса.

Современные исследовательские установки – настоящие монстры. Например, один из блоков тяжелоионного синхротрона в Дармштадте (ФРГ) – инжектор – представляет собой туннель длиной 150 метров с вакуумом 10-11 мм. рт. ст. Понятно, что новые методики исследования в области ядерной физики – весьма дорогостоящие «забавы».Так при попытке создания суперколлайдера в Эллис Каунте (Техас) Джордж Буш, тогдашний президент США, «выбил» из Японии 1 млрд. долл. США и только в одном 1992 году вложения составили 592 млн. долл. Можно представить масштабы стройки: площадь лаборатории разработки магнитов – 10000 м2. На том месте, где должен быть второй главный детектор частиц выкопана шахта шириной 48 м и глубиной 80 м, с целью изучения грунта под фундамент…

Стройка остановлена, – не хватает денег (в США-то!!!).

Электрические цепи, для которых волновой характер процесса представляет основу используемых свойств цепи, а замена распределенных элементов сосредоточенными приводит к утрате этих основных свойств цепи, называют цепями с распределенными элементами. Токи и напряжения в таких цепях являются функциями координат сечения наблюдения цепи и времени t. При составлении систем уравнений с распределенными элементами возникают трудности: I) не выполняются законы Кирхгофа; 2) очень сложно произвести выбор реальной модели цепи с распределенными элементами; 3) напряжения и токи зависят не только от времени, но и от пространственных координат.
Квантовые усилители и генераторы