Электромагнетизм Курс лекций по оптике Интерференция света Дифракция света Квантовые явления Применение фотоэффекта Современная физика атомов и молекул Радиоактивное излучение и его виды

Ядерные реакции и их основные типы

Ядерные реакции - это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с g-квантами) или друг с другом. Наиболее распространенным видом ядерной реакции является реакция, записываемая символически следующим образом:

X+a®Y+b, или Х (a. b) Y,

где Х и Y — исходное и конечное ядра, а и b — бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы.

В ядерной физике эффективность взаимодействия характеризуют эффективным сечением s. С каждым видом взаимодействия частицы с ядром связывают свое эффективное сечение: эффективное сечение рассеяния определяет процессы рассеяния, эффективное сечение поглощения — процессы поглощения. Эффективное сечение ядерной реакции

где N — число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объема п ядер, dN — число этих частиц, вступающих в ядерную реакцию в слое толщиной dx. Эффективное сечение s имеет размерность площади и характеризует вероятность того, что при падении пучка частиц на вещество произойдет реакция.

Единица эффективного сечения ядерных процессов — барн (1 барн = 10-28 м2).

 В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (и сумма массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (и сумме массовых чисел) конечных продуктов (ядер и частил) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса.

В отличие от радиоактивного распада который протекает всегда с выделением энергии, ядерные реакции могут быть как экзотермическими (с выделением энергии), так и эндотермическими (с поглощением энергии).

Важную роль в объяснении механизма многих ядерных реакций сыграло предположение Н. Бора (1936) о том, что ядерные реакции протекают в две стадии по следующей схеме:

 X+a®С®Y+b. (45.1)

Первая стадия — это захват ядром Х частицы а, приблизившейся к нему на расстояние действия ядерных сил (примерно 2-10 -15 м), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбужденном состоянии. При столкновении нуклонов составного ядра один из нуклонов (или их комбинация, например дейтрон - ядро тяжелого изотопа водорода – дейтерия, содержащее один протон и один нейтрон) или a-частица может получить энергию, достаточную для вылета из ядра. В результате возможна вторая стадия ядерной реакции — распад составного ядра на ядро Y и частицу b.

В ядерной физике вводится характерное ядерное время - время, необходимое для пролета частицей расстояния порядка величины, равной диаметру ядра (d »10-15 м). Так, для частицы с энергией 1 МэВ (что соответствует ее скорости v » 107 м/с) характерное ядерное время  с. С другой стороны, доказано, что время жизни составного ядра равно 10-16 – 10-12 с, т. е. составляет (106 - 1010) t. Это же означает, что за время жизни составного ядра может произойти очень много столкновений нуклонов между собой, т. е. перераспределение энергии между нуклонами действительно возможно. Следовательно, составное ядро живет настолько долго, что полностью «забывает», каким образом оно образовалось. Поэтому характер распада составного ядра (испускание им частицы b) - вторая стадия ядерной реакции - не зависит от способа образования составного ядра - первой стадии.

Если испущенная частица тождественна с захваченной (bºa) то схема (45.1) описывает рассеяние частицы: упругое — при Еb=Еa, неупругое — при Еb ¹ Еa. Если же испущенная частица не тождественна с захваченной (b¹а), то имеем дело с ядерной реакцией в прямом смысле слова.

Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерным взаимодействиями (например, реакции, вызываемые быстрыми нуклонами и дейтронами).

Ядерные реакции классифицируются по следующим признакам:

1) по роду участвующих в них частиц — реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, a-частиц); реакции под действием g-квантов;

2) по энергии вызывающих их частиц — реакции при малых энергиях (порядка электрон-вольт), происходящие в основном с участием нейтронов; реакции при средних энергиях (до нескольких мегаэлектронвольт), происходящие с участием g-квантов и заряженных частиц (протоны, a-частицы); реакции при высоких энергиях (сотни и тысячи мегаэлектронвольт), приводящие к рождению отсутствующих в свободном состоянии элементарных частиц и имеющие большое значение для их изучения;

3) по роду участвующих в них ядер — реакции на легких ядрах (А<50); реакции на средних ядрах (50<А< 100); реакции на тяжелых ядрах (А>100);

4) по характеру происходящих ядерных превращений — реакции с испусканием нейтронов; реакции с испусканием заряженных частиц; реакции захвата (в этих реакциях составное ядро не испускает никаких частиц, а переходит в основное состояние, излучая один или несколько g-квантов).

Первая в истории ядерная реакция осуществлена Э. Резерфордом (1919) при бомбардировке ядра азота a-частицами, испускаемыми радиоактивным источником:

Рассмотренные ядерные реакции приводят к образованию дочерних ядер, массовые и зарядовые числа которых всего на 1 — 2 единицы отличаются от материнских. Но вот в 1938 г. немецкие физики О. Ган и Ф. Штрассманн доказали, что в результате облучения урана нейтронами образуются барий и другие элементы из середины таблицы Менделеева. В следующем, 1939 г., английский физик О. Фриш и австрийский Л. Мейтнер объяснили полученный результат тем, что происходит реакция деления (расщепления) ядра урана на примерно равные осколки.

Теория деления тяжелых ядер разработана в том же, 1939 г., советским теоретиком Я. И. Френкелем на основе капельной модели ядра. Ее развили также Н. Бор и Дж. Уиллер. Согласно этой теории, при малых деформациях ядро-капля колеблется: вытягивается и сжимается под действием электростатических и поверхностных сил, подобных силам поверхностного натяжения жидкости. Если амплитуда колебаний достигает критического значения, ядро разрывается. Для этого возбуждающая его энергия должна быть не меньше некоторого значения — энергии активации. Ее и сообщает нейтрон, который вносит в ядро как свою энергию связи, так и свою кинетическую энергию.

У разных изотопов энергия активации различна. Изотоп U при захвате нейтрона превращается в изотоп U, энергия активации которого равна 6,6 МэВ. Так как энергия связи, внесенная нейтроном, равна 6,8 МэВ, то для деления ядра U достаточно внедрения нейтрона с нулевой кинетической энергией. Поэтому реакцию деления этого изотопа эффективно осуществляют медленные, тепловые, нейтроны. Они даже эффективней, чем быстрые, так как более длительное время находятся вблизи ядра, отчего возрастает вероятность захвата. При некоторых значениях скорости (энергии) нейтрона вероятность захвата резко возрастает. Это резонансное поглощение, подобное резонансному возбуждению атома фотоном. Энергия нейтрона в этом случае как раз равна разности энергий основного и возбужденного уровней ядра.

Изотоп U при захвате нейтрона превращается в U, энергия активации которого составляет 7 МэВ, а энергия связи, привнесенная нейтроном, - только 6 МэВ.

Следовательно, чтобы осуществить деление U, нейтроны должны иметь кинетическую энергию > 1 МэВ, т. е. изотоп делится быстрыми нейтронами. Если же U облучать медленными нейтронами, то происходит просто их радиационный захват с образованием радиоактивного изотопа U. Такие реакции интересны тем, что приводят к образованию радиоактивного нептуния, а затем плутония, т. е. трансурановых элементов.

Обнаруженная реакция деления урана оказалась настолько важной, что в 1944 г. Ган и Штрассман были удостоены Нобелевской премии. Если для тяжелого ядра урана удельная энергия связи составляет 7,6 МэВ, то для элементов средней части таблицы Менделеева она больше - 8,7 МэВ. Это означает, что при делении высвобождается энергия ~1,1 МэВ на каждый нуклон. Так как в уране их ~200, то при делении одного ядра выделяется ~200 МэВ. Соответственно макроскопические количества урана, например 1 г 235U, выделят энергию 8×1010 Дж, что неизмеримо больше, чем любые известные до того времени источники энергии.

Основная часть энергии деления выделяется в виде кинетической энергии «осколков» ядра. Как только они оказываются на расстоянии, большем радиуса сильного взаимодействия, их расталкивают огромные кулоновские силы. Другая часть энергии деления — малая, но очень важная — выделяется с нейтронами. В тяжелых ядрах число нейтронов, приходящихся на один протон, больше, чем в средних и легких. Поэтому, когда тяжелое ядро делится на два средних, они оказываются «перегружены» нейтронами. Это приводит к двум следствиям. Во-первых, осколки становятся b-радиоактивными, а во-вторых, часть нейтронов высвобождается. Одним из первых пришел к этому выводу Ф. Жолио-Кюри в 1939 г.

Из 200 МэВ энергии, выделившейся при делении ядра 235U, 166 МэВ составляет кинетическая энергия осколков, 14 МэВ — энергия g-излучения, 10 МэВ — энергия нейтрино, по 5 МэВ - энергии b-частиц и нейтронов.

При одном акте деления 235U выделяется в среднем ~2,5 нейтрона, а 239Pu - 2,9 нейтрона, т. е. происходит размножение нейтронов. Это важнейшее обстоятельство в 1939 г. привело отечественных физиков Я. Б. Зельдовича и Ю. Б. Харитона к мысли, что возможно осуществление цепной ядерной реакции. К аналогичным мыслям независимо пришли Э. Ферми, Ф. Жолио-Кюри и Л. Мейтнер.

Каждый из нейтронов, выделившихся в результате деления, может быть захвачен соседним ядром и вызвать точно такую же реакцию. А поскольку число нейтронов возрастает, происходит лавинообразное нарастание числа актов деления и, следовательно, лавинообразное возрастание выделяющейся энергии. Точно так же происходит лавинообразное нарастание актов ионизации при газовом разряде или актов химического взаимодействия при возгорании рабочей смеси в цилиндре двигателя. Теорию подобных химических реакций разработал ученый Н. Н. Семенов в 1928 — 1934 гг. Так как их называют цепными, то, по аналогии, развивающуюся реакцию деления тоже назвали цепной.

Минимальную массу, при которой возникает цепная реакция деления, называют критической массой (аналогично можно определить критический размер). Для 239Pu критическая масса составляет ~17 кг. Ее образует шар радиусом ~ 6 см. Конечно, критическая масса зависит от формы и плотности материала, содержания в нем делящегося изотопа и среднего числа нейтронов, выделяющихся в одном акте деления. Наличие примесей также приводит к тому, что нейтроны захватываются ядрами без деления, что уменьшает вероятность возникновения цепной реакции. Некоторые ядра (графит, тяжелая вода D2O) не делятся и не захватывают нейтроны, а отражают их (в основном).

Сумму всех этих факторов, влияющих на ход цепной реакции, характеризуют коэффициентом k размножения нейтронов. Он равен отношению числа нейтронов в активной зоне в последующем звене реакции к числу нейтронов в предыдущем звене. Очевидно, что при k <1 реакция затухает, а при k > 1 — развивается в виде цепной реакции. При k = 1 возникает пограничный, или, как его называют, критический режим реакции. В таком режиме число нейтронов остается постоянным и реакция является самоподдерживающейся.

Электрические цепи, для которых волновой характер процесса представляет основу используемых свойств цепи, а замена распределенных элементов сосредоточенными приводит к утрате этих основных свойств цепи, называют цепями с распределенными элементами. Токи и напряжения в таких цепях являются функциями координат сечения наблюдения цепи и времени t. При составлении систем уравнений с распределенными элементами возникают трудности: I) не выполняются законы Кирхгофа; 2) очень сложно произвести выбор реальной модели цепи с распределенными элементами; 3) напряжения и токи зависят не только от времени, но и от пространственных координат.
Квантовые усилители и генераторы