Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Теория электрических сигналов Линейные радиоэлектронные цепи Частотные свойства усилителей. Анализ нелинейных цепей Баланс мощностей в параметрических цепях.

Графический метод анализа стационарного режима.

Понятие колебательной характеристики линейной цепи позволяет определить стационарную амплитуду в цепи с обратной связью графическим методом.

По определению, колебательная характеристика есть зависимость амплитуды первой гармоники выходного тока I1 нелинейного элемента от амплитуды U входного гармонического напряжения. Поэтому для графического решения уравнения баланса амплитуд необходима характеристика обратной связи, представляющая собой зависимость амплитуды напряжения обратной связи U от амплитуды тока I1. Поскольку цепь обратной связи линейная, искомая зависимость представляет собой прямую линию, проходящую через начало координат. Угол наклона ее зависит от способа реализации обратной связи. В нашем случае  и  и прямой обратной связи (см. рис.). Графики будут иметь две точки пересечения: начало координат и некоторую точку UCT, ICT. Эти точки соответствуют двум возможным стационарном состояниям цепи: первая - отсутствию колебаний, вторая - стационарным автоколебаниям с амплитудой UCT. Покажем, что первая точка является неустойчивой. Пусть имеется небольшая начальная флуктуация DU. Ей будет соответствовать появление тока с амплитудой первой гармоники DI1. Этот ток создает в цепи обратной связи напряжение U*, которое приведет к появлению тока I* и т.д. Таким образом, малая начальная флуктуация DU приведет к установлению стационарной ненулевой амплитуды колебаний.

Для того, чтобы нулевая точка была неустойчивой, прямая обратной связи должна проходить в начале координат ниже графика колебательной характеристики:

Это условие самовозбуждения было уже получено из анализа корней характеристического многочлена дифференциального уравнения цепи.

Рассмотренная цепь считается находящейся в мягком режиме самовозбуждения, когда колебания возникает при . Очевидно (из построений), что точка UСТ, IСТ является устойчивой, поскольку любые DU приводят к ее возврату в прежнее положение.

Расположение линии обратной связи по отношении к колебательной характеристике может быть и иным (см. рис.). В этом случае стационарный режим будет при нулевой амплитуде. В цепи, не возникает автоколебаний при любых отклонениях DU.

Если график колебательной характеристики I1(U) имеет S - образную форму (см. след. Рис.), но начальная точка будет устойчивой, однако цепь может самовозбудиться, если в ней возникнет начальная флуктуация DU>Uпар. Режим, когда начальная точка является устойчивой, но существует пороговое значение флуктуаций, превышение которого приводит к самовозбуждению, называется жестким режимом возбуждения генератора.

Таким образом, нелинейная цепь может вести себя по разному при малых и сильных внешних воздействий. Если по линеаризованному дифференциальному уравнению можно установить устойчивость или неустойчивость цепи “в малом”, то анализ колебательной характеристики совместно с прямой обратной связи позволяет провести анализ устойчивости “ в большом” и определить возможность существования жесткого режима возбуждения.

Метод гармонической линеаризации пригоден для анализа цепей с узкополосными фильтрами - колебательными контурами с высокой добротностью. Если же фильтр не является таким контуром, то автоколебания будут возникать не только на первой гармонике, но и на других (w=nw0). При этом ....... колебаний будет негармонической. Для анализа процессов в таких цепях используют метод уравнений состояния и их численное интегрирование.

Анализ автоколебаний методом уравнений состояния

Уравнение (4), получение для автоколебательной цепи, эквивалентно системе уравнений первого порядка:

 (9)

Такое представление уравнений цепи соответствует уравнениям состояния.

В силу нелинейного характера функции I(U) найти решение (9) аналитически нельзя. Для анализа процессов применяют численные методы интегрирования систем дифференциальных уравнений - численное моделирование.

Простейший подход состоит в приближенной замене производной от функции f(t):

Обозначим  получим

  (10)

Предположим, что известна начальная флуктуация iL(0)=i0; V(0)=0. Поскольку функция I(U) может быть вычислена для любых значений аргумента, подставляя в (10), получаем:

Теперь, подставив полученные значения снова в (10), найдем iL2, V2 и т.д. Этот метод приближенного решения носит название метода Эйлера.

Решение системы уравнений вида (10) может быть представлено графически на плоскости состояния (см. рис.).

Рассмотрение процессов в автоколебательных цепях на плоскости состояния часто оказывается более наглядным, чем в другой форме.

Рассмотрим примеры, показывающие взаимосвязь характеристики и линии ОС с траекторией на плоскости состояния и осциллограммы процессов, полученных численным решением уравнений состояния.

1. Автоколебательная цепь в мягком режиме самовозбуждения с монотонным установлением амплитуды.

2. Мягкий режим самовозбуждения с немонотонным установлением амплитуды

3. Жесткий режим с монотонным установлением колебаний

4.6. RC - автогенераторы гармонических колебаний

Гармонические колебания можно получить в системах, не содержащих колебательного контура. Выделение колебания нужной частоты здесь основано на том, что условия самовозбуждения (2) и (3) в ряде случаев могут выполнять только на одной частоте.

Рассмотрим вариант такой системы (см. рис.) состоящий из усилителя с коэффициентом передачи  и цепи обратной связи с коэффициентом передачи . Чтобы воспользоваться формами (2) и (3) примем, что  и определим . Для этого воспользуемся методом контурных токов, в соответствии с которым составим систему уравнений, связывающих

решая эту систему относительно , находим

Так как  то

  (11)

Так как фазовый сдвиг, вносимый усилителем, составляет p рад, то условие самовозбуждения (3) будет выполнено, если jOC(w)=arctg(Im/Re)=.

Как следует из (11) последнее выполняется при условии

Откуда для частоты генерации находим:

  (12)

Подставляя (12) в (11) находим значения модуля передаточной функции:

(13)

Используя (13) в (2) находим коэффициент усиления усилителя, при котором возможна генерация:

Аналогичным образом анализируется и другие схемы RC - автогенераторов.

Введение в теорию нелинейных цепей Введение в теорию нелинейных цепей. Некоторые характеристики нелинейных элементов. Аппроксимация характеристик нелинейных элементов. Нелинейное преобразование формы сигнала. Нелинейное преобразование спектра сигнала. Безынерционное нелинейное преобразование суммы гармонических колебаний. Комбинационные частоты. Эффект интермодуляции. Совместное воздействие на нелинейном элементе сигналов большой и малой амплитуд.
Анализ параметрических цепей