Теория электрических сигналов Линейные радиоэлектронные цепи Частотные свойства усилителей. Анализ нелинейных цепей Баланс мощностей в параметрических цепях.

Анализ нелинейных цепей

Общие понятия об элементах нелинейных цепей

Цепи, которые изучались ранее, относятся к классу линейных цепей. Параметры элементов этих цепей. Параметры элементов этих цепей - сопротивлений, индуктивностей, емкостей - не зависит от значений приложенных к ним напряжений или протекающих через них токов.

В действительности любой реальный элемент таким постоянством не обладает и линейная теория оказывается справедливой только в определенных пределах значений напряжений и токов. Существует также обширный класс исключительно важных элементов и устройств, параметры, которых существенно зависят от токов или напряжений. Такие элементы называются нелинейными. Им нельзя приписать какой-то постоянный параметр даже при изменении переменных в ограниченном диапазоне. Для количественного описания свойств нелинейных элементов необходимо задавать зависимости, называемые характеристиками. Рассмотрим в общем виде характеристики основных нелинейных идеализированных элементов.

5.2. Модели нелинейных элементов

5.2.1 Нелинейный резистивный элемент (НЭ) полностью определяется зависимостью между током i и напряжением U (т.е. ВАХ): i=i(U) или U=U(i). Резистивный НЭ обозначается:. Одна из форм ВАХ может быть, например, такой (см. рис.).

Определить нелинейный резистивный элемент - значит задать его вольтамперную характеристику полностью. В каждой точке ВАХ, заданной конкретным значением напряжения и тока U=U0, i=i(U0)=i0, можно ввести понятие статического сопротивления

 

и динамического (дифференциального) сопротивления, равного котангенсу угла наклона касательной к ВАХ в данной точке: (см. рис.)

 

Общая классификация видов ВАХ резистивных НЭ рассматривает их свойства по положению ВАХ по квадрантам в плоскости (U, i), (см. рис.). Если график располагается только в первом и третьем квадрантах, то ВАХ относится к пассивному элементу, поскольку потребляемая мощность  (а,б). Для пассивного элемента i(0)=0. Если же часть графика попадает во второй, или в четвертый квадрант, то говорят, что элемент является активным (в). Это означает, что в его цепи есть источник ‘ электрической энергии.

 

Другим общим свойством резистивных НЭ является монотонность или немонотонность ВАХ.

Немонотонные ВАХ имеют знакопеременное дифференциальное сопротивление. На предыдущем рисунке показаны три типа ВАХ по монотонности: а - монотонная, б - N - образная, в - S - образная.

Монотонность ВАХ играет особую роль при анализе цепей, поскольку при решении уравнений приходится оперировать зависимостями U=U(i) и наоборот i=i(U). Зависимость, обратная к монотонной, также монотонная и особых проблем при обращении не возникает. Для немонотонных зависимостей необходимо решать уравнения с многозначными функциями. Геометрически, обращение монотонной ВАХ соответствует симметричному отражению графика около биссектрисы первого - третьего квадрантов (см. рис.).

 Реально в качестве резистивных НЭ используются диоды (1), варисторы (2), туннельные диоды (3), денисторы (4) (см. след. рис.).

Введение в теорию нелинейных цепей Введение в теорию нелинейных цепей. Некоторые характеристики нелинейных элементов. Аппроксимация характеристик нелинейных элементов. Нелинейное преобразование формы сигнала. Нелинейное преобразование спектра сигнала. Безынерционное нелинейное преобразование суммы гармонических колебаний. Комбинационные частоты. Эффект интермодуляции. Совместное воздействие на нелинейном элементе сигналов большой и малой амплитуд.
Анализ параметрических цепей