Отбеливание зубов

Отбеливание зубов

 

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Теория электрических сигналов Линейные радиоэлектронные цепи Частотные свойства усилителей. Анализ нелинейных цепей Баланс мощностей в параметрических цепях.

Баланс мощностей в параметрических цепях.

Рассматриваемая модель параметрической цепи реально представляет собой нелинейную цепь. А в цепи, содержащей нелинейный конденсатор, под воздействием напряжения генератора накачки и напряжения генератора сигнала, возникают колебания комбинационных частот

Чтобы представить себе как перераспределяется энергия информационного сигнала и сигнала накачки между комбинационным колебанием рассмотрим следующую цепь.

Пусть параллельно нелинейному конденсатору включены три цепи: цепь накачки, цепь сигнала и колебательный контур. Последний называют холостым контуром. Контур настроен на одну из комбинационных частот к, и, поэтому, можно принять, что других комбинационных колебаний не существует. Сумма средних мощностей колебаний сигнала PC, накачки PНК и комбинационной частоты PК должна быть равна нулю(закон сохранения энергии):

  (21)

Переходя в (21) от средних мощностей к энергиям в соответствии с (17) получим:  Подставляя сюда  находим, что

  (22)

Равенство (22) при произвольных  и  выполняется, если каждое слагаемое равно нулю (поскольку они не связаны общей частотой): Переходные процессы в нелинейных цепях описываются системой нелинейных дифференциальных уравнений, составленных для схемы цепи по законам Кирхгофа. Расчет переходных процессов в нелинейных цепях сводится, таким образом, к решению системы нелинейных дифференциальных уравнений. Значительные трудности, возникающие при таких расчетах, обусловлены сложностью решения нелинейных дифференциальных уравнений.

 

Переходя от энергии к средним мощностям получаем:

  (23)

Уравнения (23) выражают закон сохранения энергии в параметрических цепях. Их называют уравнениями Мэнли-Роу. И они являются частным случаем общей теоремы Мэнли-Роу о балансе мощностей в спектре колебания параметрической цепи, содержащей реактивную нелинейность (емкость или индуктивность). Теорема записывается в виде:

 

Они определяют законы распределения энергии сигнала накачки между гармониками выходного сигнала

Здесь Pmn - средняя мощность колебания на комбинационной частоте .

Запишем уравнения Мэнли-Роу для частного вида цепи, в которой существуют колебания только на четырех частотах:

 .

Для этого в (23) необходимо задать две пары значений m и n: m=1, n=1 и m=-1, n=1.

Тогда

  (24)

Эти формулы и устанавливают количественные соотношения (баланс) между мощностями колебаний различных частот.

Генерирование гармонических колебаний Генерация гармонических колебаний. Обобщенная схема автогенератора. Баланс амплитуд и баланс фаз. Самовозбуждение автогенератора с индуктивной обратной связью (линейное приближение). Стационарный режим автогенератора (квазилинейное приближение). Устойчивость стационарных режимов. Мягкое и жесткое самовозбуждение автогенератора. Релаксационные генераторы.
Анализ параметрических цепей